[1] Galileo Galilei. Dialogues concerning two new sciences[M]. New York: Macmillan, 1914.
[2] Euene Frankel. Corpuscular optics and the wave theory of light: the science and politics of a revolution in physics [J]. Social Studies of Science, 1976, 6(2): 141−184. doi:  10.1177/030631277600600201
[3] John Tyndall. On the blue color of the sky, the polarization of sky light, and on the polarization by cloudy matter in general [J]. Journal of the Franklin Institute, 1869, 88(2): 114−120. doi:  10.1016/0016-0032(69)90473-6
[4] Rayleigh Lord. On the light from the sky its polarization and color [J]. Philosophical Magazine, 1871, 61: 107−279.
[5] Gustav Mie. Beitraege zur Optik trueber Medien, speziell kolloidaler Metalloesungen [J]. Annalen Der Physik, 1908, 25(3): 377−445.
[6] William Bickel. Application of polarization effects in light scattering: a new biophysical tool [J]. Proceedings of the National Academy of Sciences, 1981, 73(2): 486−490. doi:  10.1073/pnas.73.2.486
[7] Willem Van De Merwe, Donald Huffman, Burt Bronk. Reproducibility and sensitivity of polarized-light scattering for identifying bacterial suspensions [J]. Applied Optics, 1989, 28(23): 5052−5057. doi:  10.1364/AO.28.005052
[8] William Bickel, Mary Stafford. Polarized light scattering from biological systems: a technique for cell differentiation [J]. Journal of Biological Physics, 1989, 9(2): 53−66.
[9] Andreas Hielscher, Judith Mourant, Irving Bigio. Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions [J]. Applied Optics, 1997, 36(1): 125−135. doi:  10.1364/AO.36.000125
[10] David Chenault, Larry Pezzaniti. Polarization imaging through scattering media[C]//Polarization Analysis, Measurement, and Remote Sensing Ⅲ. International Society for Optics and Photonics, 2000, 4133: 124-133.
[11] Vanitha Sankaran, Joseph Walsh, Duncan Maitland. Comparative study of polarized light propagation in biologic tissues [J]. Journal of Biomedical Optics, 2002, 7(3): 300−306. doi:  10.1117/1.1483318
[12] Kristan Gurton, Melvin Felton, Robert Mack, et al. MidIR and LWIR polarimetric sensor comparison study[C]//Proceedings of SPIE, 2010, 7672(1): 501–542.
[13] Piero Bruscaglioni, Giovanni Zaccanti, Qingnong Wei. Transmission of a pulsed polarized light beam through thick turbid media: numerical results [J]. Applied Optics, 1993(32): 6142−6150.
[14] Liu Fei, Han Pingli, Wei Yi, et al. Deeply seeing through highly turbid water by active polarization imaging [J]. Optics Letters, 2018, 43(20): 4903−4906. doi:  10.1364/OL.43.004903
[15] 刘成, 高隽, 范之国. 大气能见度对光偏振特性的影响[J]. 传感器与微系统, 2018, 316(6): 31−34.

Liu Cheng, Gao Jun, Fan Zhiguo. Influence of atmospheric visibility on polarization property of light [J]. Transducer and Microsystem Technologies, 2018, 316(6): 31−34. (in Chinese)
[16] 孙贤明, 王海华, 申晋. 海洋背景下气溶胶的偏振光散射特性研究[J]. 激光与光电子学进展, 2016, 53(4): 10−17.

Sun Xianming, Wang Haihua, Shen Jin. Study on polarized light scattering by aerosol over ocean [J]. Laser & Optoelectronics Progress, 2016, 53(4): 10−17. (in Chinese)
[17] 提汝芳, 孙晓兵, 李树. 近地面水平方向大气偏振辐射传输仿真与验证[J]. 红外与激光工程, 2018, 47(11): 1111001.

Ti Rufang, Sun Xiaobing, Li Shu. Simulation and validation of atmospheric polarized radiative transfer in horizon orientation near ground [J]. Infrared and Laser Engineering, 2018, 47(11): 1111001. (in Chinese)
[18] Mauro Biagi, Tarik Borogovac, Thomas Little. Adaptive receiver for indoor visible light communications [J]. Journal of Lightwave Technology, 2013, 31(23): 3676−3686. doi:  10.1109/JLT.2013.2287051
[19] Wang Yuanquan, Yang Chao, Wang Yiguang, et al. polarization division multiplexing in visible light communication [J]. Optics Letters, 2014, 39(7): 1823−1826. doi:  10.1364/OL.39.001823
[20] Xu Yong, wen Jie, Fei Lunke, et al. Review of video and image defogging algorithms and related studies on image restoration and enhancement [J]. IEEE Access, 2016, 4: 165−188. doi:  10.1109/ACCESS.2015.2511558
[21] Li Xiaobo, Hu Haofeng, Zhao Lin, et al. Polarimetric image recovery method combining histogram stretching for underwater imaging [J]. Scientific Reports, 2018, 8(1): 12430. doi:  10.1038/s41598-018-30566-8
[22] Yang Fan, Wang Chunyan, Pang Guangning. Optical system design for underwater polarization detector [J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2018, 41(1): 56−59.
[23] Simon Emberton, Lars Chittka, Aanrea Cavallaro. Underwater image and video dehazing with pure haze region segmentation [J]. Computer Vision and Image Understanding, 2018, 168: 145−156. doi:  10.1016/j.cviu.2017.08.003
[24] He Kaiming, Sun Jian, Tang Xiaoou. Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341−2353. doi:  10.1109/TPAMI.2010.168
[25] Lu Huimin, Li Yujie, Shota Nakashima, et al. Underwater image super -resolution by descattering and fusion [J]. IEEE Access, 2017, 5: 670−679. doi:  10.1109/ACCESS.2017.2648845
[26] 柴金燕, 黄晁, 陈春. 透火焰红外数字全息图像的分辨率增强算法[J]. 光电工程, 2019, 46(4): 180418. doi:  10.12086/oee.2019.180418

Chai Jinyan, Huang Zhao, Chen Chun. Resolution enhancement algorithm based on infrared digital holography imaging through flame [J]. Opto-Electronic Engineering, 2019, 46(4): 180418. (in Chinese) doi:  10.12086/oee.2019.180418
[27] Xu Qiang, Guo Zhongyi, Tao Qiangqiang, et al. Multi-spectral characteristics of polarization retrieve in various atmospheric conditions [J]. Optics Communications, 2015, 339: 167−170. doi:  10.1016/j.optcom.2014.11.065
[28] Xu Qiang, Guo Zhongyi, Tao Qiangiang, et al. A novel method of retrieving the polarization qubits after being transmitted in turbid media [J]. Journal of Optics, 2015, 17(3): 035606. doi:  10.1088/2040-8978/17/3/035606
[29] Tao Qiangqiang, Guo Zhongyi, Xu Qiang, et al. Retrieving the polarization information for satellite-to-ground light communication [J]. Journal of Optics, 2015, 17(8): 085701. doi:  10.1088/2040-8978/17/8/085701
[30] Xu Qiang, Guo Zhongyi, Tao Qiangqiang. Transmitting characteristics of polarization information under seawater [J]. Applied Optics, 2015, 54(21): 6584. doi:  10.1364/AO.54.006584
[31] Tao Qiangqiang, Sun Yongxuan, Shen Fei, et al. Active imaging with the AIDS of polarization retrieve in turbid media system [J]. Optics Communications, 2016, 359: 405−410. doi:  10.1016/j.optcom.2015.09.109
[32] Shen Fei, Wang Kaipeng, Tao Qiangqiang, et al. Polarization imaging performances based on different retrieving Mueller matrixes [J]. Optik- International Journal for Light and Electron Optics, 2018, 153: 50−57. doi:  10.1016/j.ijleo.2017.09.115
[33] 郁道银, 谈恒英. 工程光学[M]. 北京: 机械工业出版社, 2008.

Yu Daoyin, Tan Hengying. Engineering Optics[M]. Beijing: China Machine Press, 2008. (in Chinese)
[34] Thomson William. Mathematical and Physical Papers[M]. London: Cambridge University Press, 2011.
[35] Subrahmanyan Chandrasekhar. Radiative Transfer[M]. New York: Dover Publications, 1960.
[36] James Hansen, Travis Larry. Light scattering in planetary atmospheres [J]. Space Science Reviews, 1974, 16(4): 527−610. doi:  10.1007/BF00168069
[37] Witt Adolf. Multiple scattering in reflection nebulae. I - A Monte Carlo approach [J]. Astrophysical Journal Supplement, 1977, 35(1): 1−6.
[38] 廖延彪. 偏振光学[M]. 北京: 科学出版社, 2003.

Liao Yanbiao. Polarized Optics[M]. Beijing: Science Press, 2003. (in Chinese)
[39] Shih-Yau Lu, Russell Chipman. Interpretation of Mueller matrices based on polar decomposition [J]. JOSA A, 1996, 13(5): 1106−1113. doi:  10.1364/JOSAA.13.001106
[40] He Honghui, Zeng Nan, Du E, et al. A possible quantitative Mueller matrix transformation technique for anisotropic scattering media [J]. Photonics and Lasers in Medicine, 2013, 2(2): 129−137.
[41] Razvigor Ossikovski, Antonello De Martino, Steve Guyot. Forward and reverse product decompositions of depolarizing Mueller matrices [J]. Optics Letters, 2007, 32(6): 689−691. doi:  10.1364/OL.32.000689
[42] Jose Jorge Gil, Mueller Matrices. Light Scattering from Microestructures[M]. Berlin: Springer-Verlag Berlin, 2000.
[43] Jose Jorge Gil. Polarimetric characterization of light and media physical quantities involved in polarimetric phenomena [J]. The European Physical Journal Applied Physics, 2007, 40(1): 1−47.
[44] Jose Jorge Gil, Razvigor Ossikovski. Polarized Light and the Mueller Matrix Approach[M]. Boca Raton: CRC press, 2016.
[45] Jose Jorge Gil, Eusebio Bernabeu. Depolarization and polarization indices of an optical system [J]. Opt. Acta, 1986, 33(2): 185−189. doi:  10.1080/713821924
[46] Ignacio San José, Jose Jorge Gil. Invariant indices of polarimetric purity: generalized indices of purity for n×n covariance matrices [J]. Optics Communications, 2011, 284(1): 38−47. doi:  10.1016/j.optcom.2010.08.077
[47] Fernando Moreno, Francisco Gonzalez. Light scattering from microstructures [J]. Lecture Notes in Physics, 1998, 534: 1−19.
[48] Jose Jorge Gil. Polarimetric characterization of light and media: physical quantities involved in polarimetric phenomena [J]. The European Physical Journal-Applied Physics, 2007, 40(1): 1−47.
[49] Ignacio San José, Jose Jorge Gil. Polarimetric subtraction of Mueller matrices [J]. JOSA A, 2013, 30(6): 1078−1088. doi:  10.1364/JOSAA.30.001078
[50] Jose Jorge Gil. Structure of polarimetric purity of a Mueller matrix and sources of depolarization [J]. Optics Communications, 2016, 368: 165−173. doi:  10.1016/j.optcom.2016.01.092
[51] Albert Van Eeckout, Angel Lizana, Enric Garcia-Caurel, et al. Polarimetric imaging of biological tissues based on the indices of polarimetric purity [J]. Journal of Biophotonics, 2017: e201700189.
[52] Albert Van Eeckout, Angel Lizana, Enric Garcia-Caurel, et al. Synthesis and characterization of depolarizing samples based on the indices of polarimetric purity [J]. Optics Letters, 2017, 42(20): 4155−4158. doi:  10.1364/OL.42.004155
[53] He Honghui, Li Pengcheng, Ma Hui. Purity-depolarization relations and the components of purity of a Mueller matrix [J]. Optics Express, 2019, 27(16): 22645−22662. doi:  10.1364/OE.27.022645
[54] Shen Fei, Zhang Man, Guo Kai, et al. The depolarization performances of scattering systems based on the Indices of Polarimetric Purity (IPPs) [J]. Optics Express, 2019, 27: 28337−28349. doi:  10.1364/OE.27.028337
[55] Nicholas Metropolis, Stanislaw Ulam. The monte carlo method [J]. Journal of the American Statistical Association, 1949, 44(247): 335−341. doi:  10.1080/01621459.1949.10483310
[56] George Kattawar, Gilbert Plass. Radiance and polarization of multiple scattered light from haze and clouds [J]. Applied Optics, 1968, 7(8): 1519−1527. doi:  10.1364/AO.7.001519
[57] Jessica Ramella-Roman, Scott Prahl, Steve Jacques. Three Monte Carlo programs of polarized light transport into scattering media: part I [J]. Optics Express, 2005, 13(12): 4420−4438. doi:  10.1364/OPEX.13.004420
[58] Hamed Mohamed Abubaker. Study of Scattering and Polarization of Light in Biological Tissues[M]. Brno: Brno University of Technology, 2013.
[59] He Chao, He Honghui, Chang Jintao, et al. Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters [J]. Biomedical Optics Express, 2015, 6(8): 2934−2945. doi:  10.1364/BOE.6.002934
[60] Liu Teng, Sun Tao, He Honghui, et al. Comparative study of the imaging contrasts of Mueller matrix derived parameters between transmission and backscattering polarimetry [J]. Biomedical Optics Express, 2018, 9(9): 4413−4428. doi:  10.1364/BOE.9.004413
[61] Wang Ye, He Honghui, Chang Jintao, et al. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope [J]. Micron, 2015, 79: 8−15. doi:  10.1016/j.micron.2015.07.014
[62] Guo Yihong, Zeng Nan, He Honghui, et al. A study on forward scattering Mueller matrix decomposition in anisotropic medium [J]. Optics Express, 2013, 21(15): 18361−18370. doi:  10.1364/OE.21.018361
[63] Sergei Gangnus, Stephen John Matcher, Igor Victorovich Meglinski. Monte Carlo modeling of polarized light propagation in a biological tissue[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2002, 4619(6): 281-288.
[64] Dave Collins, Wolfram Blättner, Michael Wells, et al. Backward Monte Carlo calculations of the polarization characteristics of the radiation emerging from spherical-shell atmospheres [J]. Applied Optics, 1972, 11(11): 2684−2696. doi:  10.1364/AO.11.002684
[65] Guri lvanovich Marchuk, Gennadi Alekseevich. The Monte Carlo methods in atmospheric optics[M]. Springer, 1980.
[66] 贾红辉,常胜利,杨建坤,等. 非视线紫外通信大气传输特性的蒙特卡罗模拟[J]. 光子学报, 2007, 36(5): 955−960. doi:  CNKI:SUN:GZXB.0.2007-05-044

Jia Honghui, Chang Shengli, Yang Jiankun, et al. Monte Carlo simulation of atmospheric transmission characteristics in non-line-of-sight ultraviolet communication [J]. Acta Photonica Sinica, 2007, 36(5): 955−960. (in Chinese) doi:  CNKI:SUN:GZXB.0.2007-05-044
[67] Gilbert Plass, George Kattawar. Monte Carlo calculations of light scattering from clouds [J]. Applied Optics, 1968, 7(3): 415−419. doi:  10.1364/AO.7.000415
[68] Han Dahai, Fan Xing, Zhang Kai, et al. Research on multiple-scattering channel with Monte Carlo model in UV atmosphere communication [J]. Applied Optics, 2013, 52(22): 5516−5522. doi:  10.1364/AO.52.005516
[69] 陶强强. 基于偏振恢复的主动成像系统研究[D]. 合肥: 合肥工业大学, 2017.

Tao Qiangqiang. Research of the polarization retrieve imaging based on the Mueller matrix of scattering system[D]. Hefei: Hefei University of Technology, 2017. (in Chinese)
[70] 张倩倩. 离散介质中偏振光多次散射的传输特性分析[D]. 合肥: 合肥工业大学, 2013.

Zhang Qianqian. Propagation properties of polarized light after multiple scatterring through a discrete media[D]. Hefei: Hefei University of Technology, 2013. (in Chinese)
[71] John van der Laan, Jeremy Wright, David Scrymgeour, et al. Evolution of circular and linear polarization in scattering environments [J]. Optics Express, 2015, 23(25): 31874−31888. doi:  10.1364/OE.23.031874
[72] He Chao, He Honghui, Chang Jintao, et al. Characterizing microstructural changes of skeletal muscle tissues using spectral transformed Mueller matrix polarization parameters[C]//SPIE BiOS. International Society for Optics and Photonics, 2016.
[73] Hien Thi-Thu Pham, Anh Le-Trang Nguyen, Toi-Van Vo, et al. Optical parameters of human blood plasma, collagen, and calfskin based on the Stokes-Mueller technique [J]. Applied Optics, 2018, 57(16): 4353. doi:  10.1364/AO.57.004353
[74] Sun Minghao, He Honghui, Zeng Nan, et al. Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters [J]. Biomedical Optics Express, 2014, 5(12): 4223. doi:  10.1364/BOE.5.004223
[75] Sanaz Alali, Alex Vitkin. Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment [J]. Journal of Biomedical Optics, 2015, 20(6): 061104. doi:  10.1117/1.JBO.20.6.061104
[76] Pal Gunnar Ellingsen, Magnus Lilledahl, Lars Martin Sandvik Aas, et al. Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy [J]. Journal of Biomedical Optics, 2011, 16(11): 116002. doi:  10.1117/1.3643721
[77] Sandeep Manhas, Mahesh Kumar Swami, Nirmalya Ghosh, et al. Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry [J]. Optics Express, 2006, 14(1): 190−202. doi:  10.1364/OPEX.14.000190
[78] Wang Xueding, Wang Lihong. Propagation of polarized light in birefringent turbid media: A Monte Carlo study [J]. Journal of Biomedical Optics, 2002, 7(3): 279. doi:  10.1117/1.1483315
[79] Wang Xueding, Yao Gang, Wang Lihong. Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose [J]. Applied Optics, 2002, 41(4): 792−801. doi:  10.1364/AO.41.000792
[80] Michael F G Wood, Guo Xinxin, Alex Vitkin. Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology [J]. Journal of Biomedical Optics, 2007, 12(1): 014029. doi:  10.1117/1.2434980
[81] He Honghui, Zeng Nan, Li Wei, et al. Two-dimensional backscattering Mueller matrix of sphere-cylinder scattering medium [J]. Optics Letters, 2010, 35(14): 2323−2325. doi:  10.1364/OL.35.002323
[82] Chen Dongsheng, Zeng Nan, Liu Celong, et al. A method of simulating polarization-sensitive optical coherence tomography based on a polarization-sensitive Monte Carlo program and a sphere cylinder birefringence model[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2012, 855320: 1-12.
[83] He Honghui, Zeng Nan, Guo Yihong, et al. Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers [J]. Journal of Biomedical Optics, 2013, 18(4): 046002. doi:  10.1117/1.JBO.18.4.046002
[84] Guo Yihong, Zeng Nan, He Honghui, et al. Mueller matrix decomposition study on anisotropic medium including cylindrical scatterers and birefringent effect[C]//Proceedings of SPIE, 2014, 8952(10):2458-2462.
[85] 杜娥. 偏振散射特征定量检测与组织病变诊断机理研究[D]. 北京: 清华大学, 2014.

Du E. A study on quantitative polarization characterization of tissues for diagnosis application[D]. Beijing: Tsinghua University, 2014. (in Chinese)
[86] Guo Yihong, Liu Celong, Zeng Nan, et al. Study on retardance due to well-ordered birefringent cylinders in anisotropic scattering media [J]. Journal of Biomedical Optics, 2014, 19(6): 065001. doi:  10.1117/1.JBO.19.6.065001
[87] Shen Fei, Zhang Bianmei, Guo Kai, et al. The depolarization performances of the polarized light in different scattering media systems [J]. IEEE Photonics Journal, 2017, 99: 1−1.
[88] 汪杰君, 刘小燕, 张玉婷. 偏振光在气溶胶中的传输特性研究[J]. 激光与光电子学进展, 2018, 55(8): 080103.

Wang Jiejun, Liu Xiaoyan, Zhang Yuting. Transmission characteristics of polarized light in aerosol [J]. Laser & Optoelectronics Progress, 2018, 55(8): 080103. (in Chinese)
[89] Hu Tianwei, Shen Fei, Wang Kangpeng, et al. Broad-Band transmission characteristics of polarizations in foggy environments [J]. Atmosphere, 2019, 10(6): 342. doi:  10.3390/atmos10060342
[90] Syoki Takahashi, Takaaki Maeda, Hideki Funamizu. Quantitative evaluation on the depth and spread of light propagation in skin tissue using Monte Carlo simulation[C]//Biomedical Imaging and Sensing Conference. International Society for Optics and Photonics, 2017, 10251: 1025110.
[91] Angel Pierangelo, Sandeep Manhas, Abdelali Benali. Exvivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging [J]. Journal of Biomedical Optics, 2012, 17(6): 066009. doi:  10.1117/1.JBO.17.6.066009
[92] Maria-Rosaria Antonelli, Angelo Pierangelo, Tatiana Novikova, et al. Impact of model parameters on Monte Carlo simulations of backscattering Mueller matrix images of colon tissue [J]. Biomedical Optics Express, 2011, 2(7): 1836−1851. doi:  10.1364/BOE.2.001836
[93] Wang Chi, Gao Jun, Yao Tingting, et al. Acquiring reflective polarization from arbitrary multi-layer surface based on Monte Carlo simulation [J]. Optics Express, 2016, 24(9): 9397. doi:  10.1364/OE.24.009397
[94] 徐强. 偏振信息在不同分散体系中的传输性能研究[D]. 合肥: 合肥工业大学, 2015.

Xu Qiang. Research on transmission performance of polarization information in various disperse systems[D]. Hefei: Hefei University of Technology, 2015. (in Chinese)
[95] 王开鹏. 云雾复杂分散体系下偏振信息传输特性研究[D]. 合肥: 合肥工业大学, 2019.

Wang Kaipeng. Research on transmission characteristics of polarizations in a complex dispersion system of cloud and fog[D]. Hefei: Hefei University of Technology, 2019. (in Chinese)
[96] L Bartolini, L De Dominicis, G Fornetti, et al. Improvement in underwater phase measurement of an amplitude-modulated laser beam by polarimetric techniques [J]. Optics Letters, 2007, 32(11): 1402−1404. doi:  10.1364/OL.32.001402
[97] Linda Mullen, Brandon Cochenour, William Rabinovich, et al. Backscatter suppression for underwater modulating retroreflector links using polarization discrimination [J]. Applied Optics, 2009, 48(2): 328−337. doi:  10.1364/AO.48.000328
[98] Tali Treibitz, Schechner. Active polarization descattering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(3): 385−399. doi:  10.1109/TPAMI.2008.85
[99] John Walker, Peter Chang, Keith lain Hopcraft. Visibility depth improvement in active polarization imaging in scattering media [J]. Applied Optics, 2000, 39(27): 4933−4941. doi:  10.1364/AO.39.004933
[100] Darren Alexis Miller, Eustace Lous Dereniak. Selective polarization imager for contrast enhancements in remote scattering media [J]. Applied Optics, 2012, 51(18): 4092−4102. doi:  10.1364/AO.51.004092
[101] Matthieu Boffety, Frédéric Galland, Anne-Gaëlle Allais. Influence of polarization filtering on image registration precision in underwater conditions [J]. Optics Letters, 2012, 37(15): 3273−3275. doi:  10.1364/OL.37.003273
[102] Zhu Yongchao, Shi Jianhong, Yang Ying, et al. Polarization difference ghost imaging [J]. Applied Optics, 2015, 54(6): 1279−1284. doi:  10.1364/AO.54.001279
[103] Kudn Turpin, John Walker, Peter Chang, et al. The influence of particle size in active polarization imaging in scattering media [J]. Optics Communications, 1999, 168(5): 325−335.
[104] 管今哥, 朱京平, 田恒, 等. 基于Stokes矢量的实时偏振差分水下成像研究[J]. 物理学报, 2015, 64(22): 1−7.

Guan Jinge, Zhu Jingping, Tian Heng, et al. Real-time polarization difference underwater imaging based on Stokes vector [J]. Acta Physica Sinica, 2015, 64(22): 1−7. (in Chinese)
[105] Stephen Morgan, Qun Zhu, Ian Stockford, et al. Rotating orthogonal polarization imaging [J]. Optics Letters, 2008, 33(13): 1503−1505. doi:  10.1364/OL.33.001503
[106] Li Ming, Lu Pengfei, Yu Zhongyuan, et al. Vector Monte Carlo simulations on atmospheric scattering of polarization qubits [J]. JOSAA, 2013, 30(3): 448−454. doi:  10.1364/JOSAA.30.000448
[107] Diran Deirmendjian. Electromagnetic scattering on spherical polydispersions[R]. The Rand Corporation Santa Monica CA, 1969.
[108] Louis Elterman. Vertical-attenuation model with eight surface meteorological ranges 2 to 13 kilometers[R]. Air Force Cambridge Research Labs Hanscom AFB Ma, 1970.
[109] Frederic Volz. Infrared refractive index of atmospheric aerosol substances [J]. Applied Optics, 1972, 11(4): 755−759. doi:  10.1364/AO.11.000755
[110] Ma Zhongli, Wen Jie, Zhang Cheng, et al. An effective fusion defogging approach for single sea fog image [J]. Neurocomputing, 2016, 173: 1257−1267. doi:  10.1016/j.neucom.2015.08.084
[111] Guo Fan, Cai Zixing, Xie Bin, et al. Review and prospect of image dehazing techniques [J]. Journal of Computer Applications, 2010, 30(9): 2417−2421. doi:  10.3724/SP.J.1087.2010.02417
[112] Liu Jun, Wang Xing, Chen Min, et al. Thin cloud removal from single satellite images [J]. Optics Express, 2014, 22(1): 618−632. doi:  10.1364/OE.22.000618
[113] Liang Jian, Zhang Wenfei, Ren Liyong, et al. Polarimetric dehazing method for visibility improvement based on visible and infrared image fusion [J]. Applied Optics, 2016, 55(29): 8821−8226.
[114] Fabrizio Russo. An image enhancement technique combining sharpening and noise reduction [J]. IEEE Transactions on Instrumentation and Measurement, 2002, 51(4): 824−828. doi:  10.1109/TIM.2002.803394
[115] Yoav Schechner, Srinivasa Narasimhan, Shree Nayar. Instant dehazing of images using polarization[C]//CVPR, 2001, 1: 325-332.
[116] Einav Namer, Sarit Shwartz, Schechner. Skyless polarimetric calibration and visibility enhancement [J]. Optics Express, 2009, 17(2): 472−493. doi:  10.1364/OE.17.000472
[117] Liang Jian, Ren Liyong, Ju Haijuan, et al. Visibility enhancement of hazy images based on a universal polarimetric imaging method [J]. Journal of Applied Physics, 2014, 116(17): 173107. doi:  10.1063/1.4901244
[118] Liang Jian, Ren Liyong, Qu Enshi, et al. Method for enhancing visibility of hazy images based on polarimetric imaging [J]. Photonics Research, 2014, 2(1): 38−44. doi:  10.1364/PRJ.2.000038
[119] Zhang Wenfei, Liang Jian, Ren Liyong, et al. Fast polarimetric dehazing method for visibility enhancement in HSI colour space [J]. Journal of Optics, 2017, 19(9): 095606. doi:  10.1088/2040-8986/aa7f39
[120] Liang Jian, Ren Liyong, Ju Haijuan, et al. Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization [J]. Optics Express, 2015, 23(20): 26146−26157. doi:  10.1364/OE.23.026146
[121] Zhang Wenfei, Liang Jian, Ren Liyong. Haze-removal polarimetric imaging schemes with the consideration of airlight's circular polarization effect [J]. Optik, 2019, 182: 1099−1105. doi:  10.1016/j.ijleo.2019.01.048
[122] Schechner Y Y, Karpel N. Recovery of underwater visibility and structure by polarization analysis [J]. IEEE Journal of Oceanic Engineering, 2005, 30(3): 570−587. doi:  10.1109/JOE.2005.850871
[123] Huang Bingjing, Liu Tiegen, Hu Haofeng, et al. Underwater image recovery considering polarization effects of objects [J]. Optics Express, 2016, 24(9): 9826−9838. doi:  10.1364/OE.24.009826
[124] John van der Laan, Jeremy Wright, David Scrymgeour, et al. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths [J]. Applied Optics, 2015, 54(9): 2266−2274. doi:  10.1364/AO.54.002266
[125] Hu Haofeng, Zhao Lin, Li Xiaobo, et al. Polarimetric image recovery in turbid media employing circularly polarized light [J]. Optics Express, 2018, 26(19): 25047−25059. doi:  10.1364/OE.26.025047
[126] Hu Haofeng, Zhao Lin, Li Xiaobo, et al. Underwater image recovery under the nonuniform optical field based on polarimetric imaging [J]. IEEE Photonics Journal, 2018, 10(1): 6900309.