[1] Extance A. Military technology: Laser weapons get real [J]. Nature News, 2015, 521(7553): 408. doi:  10.1038/521408a
[2] Williams R J, Kitzler O, Bai Z, et al. High power diamond Raman lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1602214.
[3] Zervas M N, Codemard C A. High power fiber lasers: A review [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241. doi:  10.1109/JSTQE.2014.2321279
[4] Comaskey B J, Beach R, Albrecht G, et al. High average powers diode pumped slab laser [J]. IEEE Journal of Quantum Electronics, 1992, 28(4): 992-996. doi:  10.1109/3.135218
[5] Wang H, Lin L, Ye X. Status and development trend of high power slab laser technology [J]. Infrared and Laser Engineering, 2020, 49(7): 20190456. (in Chinese) doi:  10.3788/IRLA20190456
[6] Koechner W. Solid-state Laser Engineering [M]. US: Springer, 2006.
[7] Supradeepa V R, Nicholson J W. Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers [J]. Optics Letters, 2013, 38(14): 2538-2541. doi:  10.1364/OL.38.002538
[8] Jauregui C, Stihler C, Limpert J. Transverse mode instability [J]. Advances in Optics and Photonics, 2020, 12(2): 429-484. doi:  10.1364/AOP.385184
[9] Huo Xiaowei, Qi Yaiyao, Li Yuqi, et al. Research progress of LD-pumped Pr3+-doped solid-state laser in visible wavelength [J]. Electro-optic Technology & Application, 2019, 34(5): 7-15. (in Chinese) doi:  10.3969/j.issn.1673-1255.2019.05.002
[10] Sharma U, Kim C S, Kang J U. Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications [J]. IEEE Photonics Technology Letters, 2004, 16(5): 1277-1279. doi:  10.1109/LPT.2004.825991
[11] Akbari R, Zhao H, Major A. High-power continuous-wave dual-wavelength operation of a diode-pumped Yb: KGW laser [J]. Optics Letters, 2016, 41(7): 1601-1604. doi:  10.1364/OL.41.001601
[12] Deng Q, Wu D, Kuang Z, et al. 532 nm/660 nm dual wavelength lidar for self-calibration of water vapor mixing ratio [J]. Infrared and Laser Engineering, 2018, 47(12): 1230004. (in Chinese) doi:  10.3788/IRLA201847.1230004
[13] Alavipanah S K, Matinfar H R, Rafiei Emam A, et al. Criteria of selecting satellite data for studying land resources [J]. Desert, 2010, 15(2): 83-102.
[14] Vatnik I D, Churkin D V, Babin S A, et al. Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm [J]. Optics Express, 2011, 19(19): 18486-18494. doi:  10.1364/OE.19.018486
[15] Bai Z, Williams R J, Kitzler Ondrej, et al. 302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement [J]. Optics Express, 2018, 26(16): 19797-19803. doi:  10.1364/OE.26.019797
[16] Boyd R W. Nonlinear Optics[M]. 3 ed, US: Academic Press, 2008.
[17] Pask H M. The design and operation of solid-state Raman lasers [J]. Progress in Quantum Electronics, 2003, 27(1): 3-56. doi:  10.1016/S0079-6727(02)00017-4
[18] Piper J A, Pask H M. Crystalline raman lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 692-704. doi:  10.1109/JSTQE.2007.897175
[19] Supradeepa V R, Feng Y, Nicholson J W. Raman fiber lasers [J]. Journal of Optics, 2017, 19(2): 023001.
[20] Bai Z, Williams R J, Jasbeer H, et al. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion [J]. Optics Letters, 2018, 43(3): 563-566. doi:  10.1364/OL.43.000563
[21] Bai Zhenxu, Chen Hui, Li Yuqi, et al. Development of beam brightness enhancement based on diamond Raman conversion [J]. Infrared and Laser Engineering, 2021, 50(1): 20200098. (in Chinese) doi:  10.3788/IRLA20200098
[22] Mildren R P, Rabeau J R. Optical Engineering of Diamond [M]. Berlin: Wiley‐VCH Verlag GmbH & Co. KGaA, 2013.
[23] Li Y, Ding J, Bai Z, et al. Diamond Raman laser: a promising high-beam-quality and low-thermal-effect laser [J]. High Power Laser Science and Engineering, 2021, 9: e35.
[24] Bai Zhenxu, Yang Xuezong, Chen Hui, et al. Research progress of high-power diamond laser technology (Invited) [J]. Infrared and Laser Engineering, 2020, 49(12): 20201076. (in Chinese) doi:  10.3788/IRLA20201076
[25] Granados E, Spence D J, Mildren R P. Deep ultraviolet diamond Raman laser [J]. Optics Express, 2011, 19(11): 10857-10863. doi:  10.1364/OE.19.010857
[26] Yang X, Kitzler O, Spence D J, et al. Diamond sodium guide star laser [J]. Optics Letters, 2020, 45(7): 1898-1901. doi:  10.1364/OL.387879
[27] Li Y, Bai Z, Chen H, et al. Eye-safe diamond Raman laser [J]. Results in Physics, 2020, 16: 102853. doi:  10.1016/j.rinp.2019.102853
[28] Sabella A, Piper J A, Mildren R P. Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm [J]. Optics Letters, 2014, 39(13): 4037-4040. doi:  10.1364/OL.39.004037
[29] Antipov S, Sabella A, Williams R J, et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2= 15 beam [J]. Optics Letters, 2019, 44(10): 2506-2509. doi:  10.1364/OL.44.002506
[30] Yang X, Bai Z, Chen D, et al. Widely-tunable single-frequency diamond Raman laser [J]. Optics Express, 2021, 29(18): 29449-29457. doi:  10.1364/OE.435023
[31] Williams R J, Kitzler O, McKay A, et al. Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping [J]. Optics Letters, 2014, 39(14): 4152-4155. doi:  10.1364/OL.39.004152
[32] Bai Z, Zhang Z, Wang K, et al. Comprehensive thermal analysis of diamond in a high-power Raman cavity based on FVM-FEM coupled method [J]. Nanomaterials, 2021, 11(6): 1572. doi:  10.3390/nano11061572
[33] Antipov S, Williams R J, Sabella A, et al. Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power [J]. Optics Express, 2020, 28(10): 15232-15239. doi:  10.1364/OE.388794
[34] Kitzler O, McKay A, Spence D J, et al. Modelling and optimization of continuous-wave external cavity Raman lasers [J]. Optics Express, 2015, 23: 8590-8602. doi:  10.1364/OE.23.008590
[35] Williams R J, Spence D J, Lux O, et al. High-power continuous-wave Raman frequency conversion from 1.06 µm to 1.49 µm in diamond [J]. Optics Express, 2017, 25(2): 749-757. doi:  10.1364/OE.25.000749
[36] Li M, Kitzler O, Mildren R P, et al. Modelling and characterisation of continuous wave resonantly pumped diamond Raman lasers [J]. Optics Express, 2021, 29(12): 18427-18436. doi:  10.1364/OE.426067
[37] Lux O, Sarang S, Kitzler O, et al. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain [J]. Optica, 2016, 3(8): 876-881. doi:  10.1364/OPTICA.3.000876
[38] Sheng Q, Li R, Lee A J, et al. A single-frequency intracavity Raman laser [J]. Optics Express, 2019, 27(6): 8540-8553. doi:  10.1364/OE.27.008540
[39] Casula R, Penttinen J P, Guina M, et al. Cascaded crystalline Raman lasers for extended wavelength coverage: Continuous-wave, third-Stokes operation [J]. Optica, 2018, 5(11): 1406-1413. doi:  10.1364/OPTICA.5.001406