[1] Daendliker R, Hug K, Politch J, et al. High-accuracy distance measurements with multiple-wavelength interferometry [J]. Optical Engineering, 1995, 34(8): 2407-2412. doi:  10.1117/12.205665
[2] Fox-Murphy A F, Howell D F, Nickerson R B, et al. Frequency scanned interferometry (FSI): The basis of a survey system for ATLAS using fast automated remote interferometry [J]. Nucl Instr and Meth in Phys Res A, 1996, 383(1): 229-237. doi:  10.1016/S0168-9002(96)00617-1
[3] Hibino K, Tani Y, Bitou Y, et al. Discontinuous surface measurement by wavelengthtuning interferometry with the excess fraction method correcting scanning nonlinearity [J]. Applied Optics, 2011, 50(6): 962-969. doi:  10.1364/AO.50.000962
[4] Dai X L, Seta K. High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry [J]. Measurement Science and Technology, 1998, 9(7): 1031-1035. doi:  10.1088/0957-0233/9/7/004
[5] Rovati L, Minoni U, Docchio F. Dispersive white light combined with a frequency-modulated continuous-wave interferometer for high-resolution absolute measurements of distance [J]. Optics Letters, 1997, 22(12): 850-852. doi:  10.1364/OL.22.000850
[6] Jha A, Azcona F J, Royo S. Frequency-modulated optical feedback interferometry for nanometric scale vibrometry [J]. IEEE Photonics Technology Letters, 2016, 28(11): 1217-1220. doi:  10.1109/LPT.2016.2531790
[7] Yoshino H, Walls J M, Smith R. Interfacial surface roughness determination by coherence scanning interferometry using noise compensation [J]. Applied Optics, 2017, 56(16): 4757-4765. doi:  10.1364/AO.56.004757
[8] Lau K, Hocken R, Haynes L. Robot performance measurements using automatic laser tracking techniques [J]. Robotics and Computer-Integrated Manufacturing, 1985, 2(3): 227-236.
[9] Kikuta H, Iwata K, Nagata R. Distance measurement by the wavelength shift of laser diode light [J]. Applied Optics, 1986, 25(17): 2976-2980. doi:  10.1364/AO.25.002976
[10] Shi G, Wang W. Single laser complex method to improve the resolution of FMCW laser ranging [J]. J Infrared Millim Waves, 2016, 35(3): 363-367. (in Chinese)
[11] Hou C B, Wang J G, Yang J, et al. Improved path imbalance measurement of a fiber-optic interferometer based on frequency scanning interferometry [J]. Measurement Science and Technology, 2017, 28(8): 085007. doi:  10.1088/1361-6501/aa73a9
[12] Iiyama K, Matsui S, Kobayashi T, et al. High-resolution FMCW reflectometry using a single-mode vertical-cavity surface-emitting laser [J]. IEEE Photonics Technology Letters, 2011, 23(11): 703-705. doi:  10.1109/LPT.2011.2131124
[13] Ye S H, Zhu J G, Zhang Z L, et al. Status and development of large-scale coordinate measurement research [J]. Acta Metrologica Sinica, 2008, 29(4A): 1-6. (in Chinese)
[14] Estler W T, Edmundson K L, Peggs G N, et al. Large-scale metrology - An update [J]. CIRP Annals, 2002, 51(2): 587-609. doi:  10.1016/S0007-8506(07)61702-8
[15] Zhang K, Lv T, Mo D, et al. Double sideband frequency scanning interferometry for distance measurement in the outdoor environment [J]. Optics Communications, 2018, 425: 176-179. doi:  10.1016/j.optcom.2018.04.056
[16] Zhang T, Gao F, Muhamedsalih H, et al. Improvement of the fringe analysis algorithm for wavelength scanning interferometry based on filter parameter optimization [J]. Applied Optics, 2018, 57(9): 2227-2234. doi:  10.1364/AO.57.002227
[17] Qu X H, Zhi G T, Zhang F M, et al. Improvement of resolution of frequency modulated continuous wave laser ranging system by signal splicing [J]. Optics and Precision Engineering, 2015, 23(1): 40-47. (in Chinese) doi:  10.3788/OPE.20152301.0040
[18] Tilford C R. Analytical procedure for determining lengths from fractional fringes [J]. Applied Optics, 1977, 16(7): 1857-1860. doi:  10.1364/AO.16.001857
[19] Cabral A, Rebordã o J. Accuracy of frequency-sweeping interferometry for absolute distance metrology [J]. Optical Engineering, 2007, 46(7): 073602. doi:  10.1117/1.2754308
[20] Bitou Y, Seta K. Gauge block measurement using a wavelength scanning interferometer [J]. Japanese Journal of Applied Physics, 2000, 39(10): 6084-6088.
[21] Moore E D, McLeod R R. Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry [J]. Optics Express, 2008, 16(17): 13139-13149.
[22] Shi G, Zhang F M, Qu X H, et al. High-resolution frequency-modulated continuous-wave laser ranging for precision distance metrology applications [J]. Optical Engineering, 2014, 53(12): 122402. doi:  10.1117/1.OE.53.12.122402
[23] Shi G, Wang W. Dual interferometry FMCW laser ranging for high precision absolute distance measurement system [J]. Infrared and Laser Engineering, 2016, 45(8): 0806001. (in Chinese) doi:  10.3788/IRLA201645.0806001
[24] Ji N K, Zhang F M, Qu X H, et al. Ranging technology for frequency modulated continuous wave laser based on phase difference frequency measurement [J]. Chinese Journal of Lasers, 2018, 45(11): 1104002. (in Chinese) doi:  10.3788/CJL201845.1104002
[25] Liu Z, Liu Z G, Deng Z W, et al. Suppression of nonlinear frequency sweep in frequency sweeping interferometer based on order tracking technique [J]. Acta Optica Sinica, 2016, 36(1): 140-148. (in Chinese)
[26] Deng Z W, Liu Z G, Jia X Y, et al. Dynamic cascade-model-based frequency-scanning interferometry for real-time and rapid absolute optical ranging [J]. Optics Express, 2019, 27(15): 21929-21945. doi:  10.1364/OE.27.021929
[27] Deng W, Liu Z G, Deng Z W, et al. Extraction of interference phase in frequencyscanning interferometry based on empirical mode decomposition and Hilbert transform [J]. Applied Optics, 2018, 57(9): 2299-2305. doi:  10.1364/AO.57.002299
[28] Greiner C, Boggs B, Wang T, et al. Laser frequency stabilization by means of optical self-heterodyne beat-frequency control [J]. Optics Letters, 1998, 23(16): 1280-1282. doi:  10.1364/OL.23.001280
[29] Iiyama K, Wang L T, Hayashi K I. Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry [J]. Journal of Lightwave Technology, 1996, 14(2): 173-178. doi:  10.1109/50.482260
[30] Ahn T J, Kim D Y. Analysis of nonlinear frequency sweep in high-speed tunable laser sources using a self-homodyne measurement and Hilbert transformation [J]. Applied Optics, 2007, 46(13): 2394-2400. doi:  10.1364/AO.46.002394
[31] Roos P A, Reibel R R, Berg T, et al. Ultrabroadband optical chirp linearization for precision metrology applications [J]. Optics Letters, 2009, 34(23): 3692-3694. doi:  10.1364/OL.34.003692
[32] Kakuma S, Katase Y. Resolution improvement in vertical-cavity-surface-emitting-laser diode interferometry based on linear least-squares estimation of phase gradients of phase-locked fringes [J]. Optical Review, 2010, 17(5): 481-485. doi:  10.1007/s10043-010-0087-3
[33] Kakuma S. Frequency scanning interferometry with nanometer precision using a vertical-cavity surface-emitting laser diode under scanning speed control [J]. Optical Review, 2015, 22(6): 869-874. doi:  10.1007/s10043-015-0140-3
[34] Medhat M, Sobee M, Hussein H M, et al. Distance measurement using frequency scanning interferometry with mode-hoped laser [J]. Optics and Laser Technology, 2016, 80: 209-213. doi:  10.1016/j.optlastec.2016.01.025
[35] Deng Z W, Liu Z G, Li B, et al. Precision improvement in frequency-scanning interferometry based on suppressing nonlinear optical frequency sweeping [J]. Optical Review, 2015, 22(5): 724-730. doi:  10.1007/s10043-015-0134-1
[36] Zhu Y, Liu Z G, Deng Wen, et al. Input signal shaping based on harmonic frequency response function for suppressing nonlinear optical frequency in frequency-scanning interferometry [J]. Review of Scientific Instruments, 2018, 89(5): 053109. doi:  10.1063/1.5025369
[37] Ahn T J, Lee J Y, Kim D Y. Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation [J]. Applied Optics, 2005, 44(35): 7630-7634. doi:  10.1364/AO.44.007630
[38] Yüksel K, Wuilpart M, Mégret P. Analysis and suppression of nonlinear frequency modulation in an optical frequency-domain reflectometer [J]. Optics Express, 2009, 17(7): 5845-5851. doi:  10.1364/OE.17.005845
[39] Meng X S, Zhang F M, Qu X H. High precision and fast method for absolute distance measurement based on resampling technique used in FM continuous wave laser ranging [J]. Acta Physica Sinica, 2015, 64(23): 230601. (in Chinese) doi:  10.7498/aps.64.230601
[40] Yao Y N, Zhang F M, Qu X H. Hardware-based equispaced-phase resampling nonlinearity correction algorithm and spectral analysis method [J]. Acta Optica Sinica, 2016, 36(12): 1212003. (in Chinese) doi:  10.3788/AOS201636.1212003
[41] Jiang S, Liu B, Wang H C, et al. Absolute distance measurement using frequency-scanning interferometry based on Hilbert phase subdivision [J]. Sensors, 2019, 19(23): 5132. doi:  10.3390/s19235132
[42] Liu Z, Liu Z G, Deng Z W, et al. Interference signal frequency tracking for extracting phase in frequency scanning interferometry using an extended Kalman filter [J]. Applied Optics, 2016, 55(11): 2985-2992. doi:  10.1364/AO.55.002985
[43] Wang Z Y, Liu Z G, Deng Z W, et al. Phase extraction of non-stationary interference signal in frequency scanning interferometry using complex shifted Morlet wavelets [J]. Optics Communications, 2018, 420: 26-33. doi:  10.1016/j.optcom.2018.03.032
[44] Deng Z W, Liu Z G, Gu S W, et al. Frequency-scanning interferometry for depth mapping using the Fabry–Perot cavity as a reference with compensation for nonlinear optical frequency scanning [J]. Optics Communications, 2020, 455: 124556. doi:  10.1016/j.optcom.2019.124556
[45] Ohna R, Uehira I, Kakuma S I. Interferometric determination of a static optical path difference using a frequency swept laser diode [J]. Measurement Science and Technology, 1990, 1(6): 500-504. doi:  10.1088/0957-0233/1/6/007
[46] Jing L Q, Zheng G, Sun B, et al. Measurement of distance to moving target using frequency-modulated continuous-wave interference technique [J]. Chinese Journal of Lasers, 2019, 46(12): 1204001. (in Chinese) doi:  10.3788/CJL201946.1204001
[47] Li Y T, Zhang F M, Pan H, et al. Simulation of vibration compensation in frequency-modulated continuous-wave laser ranging system [J]. Chinese Journal of Lasers, 2019, 46(1): 0104001. (in Chinese) doi:  10.3788/CJL201946.0104001
[48] Cabral A, Rebordão J M, Abreu M. Dual frequency sweeping interferometry with range-invariant accuracy for absolute distance metrology [C]//Proceedings of the SPIE, 2008, 7063: 70630T.
[49] Cabral A, Abreu M, Rebordão J M. Dual-frequency sweeping interferometry for absolute metrology of long distances [J]. Optical Engineering, 2010, 49(8): 085601. doi:  10.1117/1.3481105
[50] Schneider R, Thürmel P, Stockmann M. Distance measurement of moving objects by frequency modulated laser radar [J]. Optical Engineering, 2001, 40(1): 33-37. doi:  10.1117/1.1332772
[51] Coe P A, Howell D F, Nickerson R B. Frequency scanning interferometry in ATLAS: Remote, multiple, simultaneous and precise distance measurements in a hostile environment [J]. Measurement Science and Technology, 2004, 15(11): 2175-2187. doi:  10.1088/0957-0233/15/11/001
[52] Yang H J, Deibel J, Nyberg S, et al. High-precision absolute distance and vibration measurement with frequency scanned interferometry [J]. Applied Optics, 2005, 44(19): 3937-3944. doi:  10.1364/AO.44.003937
[53] Swinkels B L, Bhattacharya N, Braat J J M. Correcting movement errors in frequency-sweeping interferometry [J]. Optics Letters, 2005, 30(17): 2242-2244. doi:  10.1364/OL.30.002242
[54] Cabral A, Rebordão J. Absolute distance metrology with frequency sweeping interferometry [C]//Proceedings of SPIE, 2005, 5879: 58790L.
[55] Le Floch S, Salvadé Y, Mitouassiwou R, et al. Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry [J]. Applied Optics, 2008, 47(16): 3027-3031. doi:  10.1364/AO.47.003027
[56] Le Floch S, Salvadé Y, Droz N, et al. Superheterodyne configuration for two-wavelength interferometry applied to absolute distance measurement [J]. Applied Optics, 2010, 49(4): 714-717. doi:  10.1364/AO.49.000714
[57] Pollinger F, Meiners-Hagen K, Wedde M, et al. Diode-laser-based high-precision absolute distance interferometer of 20 m range [J]. Applied Optics, 2009, 48(32): 6188-6194. doi:  10.1364/AO.48.006188
[58] Li Z D, Jiang Y S, Sang F, et al. Movement error compensation in frequency scanning interferometry for absolute distance measurement [J]. Acta Optica Sinica, 2011, 31(3): 0314001. (in Chinese) doi:  10.3788/AOS201131.0314001
[59] Kakuma S, Katase Y. Frequency scanning interferometry immune to length drift using a pair of vertical-cavity surface-emitting laser diodes [J]. Optical Review, 2012, 19(6): 376-380. doi:  10.1007/s10043-012-0061-3
[60] Dale J, Hughes B, Lancaster A J, et al. Multi-channel absolute distance measurement system with subppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells [J]. Optics Express, 2014, 22(20): 24869-24893. doi:  10.1364/OE.22.024869
[61] Tao L, Liu Z G, Zhang W B, et al. Frequency-scanning interferometry for dynamic absolute distance measurement using Kalman filter [J]. Optics Letters, 2014, 39(24): 6997-7000. doi:  10.1364/OL.39.006997
[62] Tao L, Liu Z G, Lv T, et al. Drift error compensation method of frequency sweeping interferometer by consecutive forward and reverse optical frequency scanning [J]. Acta Optica Sinica, 2014, 34(2): 0212002. (in Chinese) doi:  10.3788/AOS201434.0212002
[63] Martinez J J, Campbell M A, Warden M S, et al. Dual-sweep frequency scanning interferometry using four wave mixing [J]. IEEE Photonics Technology Letters, 2015, 27(7): 733-736. doi:  10.1109/LPT.2015.2390779
[64] Prellinger G, Meiners-Hagen K, Pollinger F. Spectroscopically in situ traceable heterodyne frequency-scanning interferometry for distances up to 50m [J]. Measurement Science and Technology, 2015, 26(8): 084003. doi:  10.1088/0957-0233/26/8/084003
[65] Prellinger G, Meiners-Hagen K, Pollinger F. Dynamic high-resolution spectroscopic frequency referencing for frequency sweeping interferometry [J]. Surface Topography: Metrology and Properties, 2016, 4(2): 024012. doi:  10.1088/2051-672X/4/2/024012
[66] Lu C, Liu G D, Liu B G, et al. Absolute distance measurement system with micron-grade measurement uncertainty and 24 m range using frequency scanning interferometry with compensation of environmental vibration [J]. Optics Express, 2016, 24(26): 30215-30224. doi:  10.1364/OE.24.030215
[67] Liu G D, Xu X K, Liu B G, et al. A method of suppressing vibration for high precision broadband laser frequency scanning interferometry [J]. Acta Physica Sinica, 2016, 65(20): 209501. (in Chinese) doi:  10.7498/aps.65.209501
[68] Chen X L, Wang X C, Pan S L. Accuracy enhanced distance measurement system using doublesideband modulated frequency scanning interferometry [J]. Optical Engineering, 2017, 56(3): 036114. doi:  10.1117/1.OE.56.3.036114
[69] Chen X L, Wang X C, Pan S L. Laser ranging of frequency scanning interferometry system based on double-sideband modulation [J]. Acta Photonica Sinica, 2017, 46(6): 0612005. (in Chinese) doi:  10.3788/gzxb20174606.0612005
[70] Mo D, Wang R, Li G Z, et al. Double-sideband frequency scanning interferometry for long-distance dynamic absolute measurement [J]. Applied Physics B, 2017, 123: 272.
[71] Jia X Y, Liu Z G, Tao L, et al. Frequency-scanning interferometry using a time-varying Kalman filter for dynamic tracking measurements [J]. Optics Express, 2017, 25(21): 25782-25796. doi:  10.1364/OE.25.025782
[72] Jia X Y, Liu Z G, Deng Z W, et al. Dynamic absolute distance measurement by frequency sweeping interferometry based Doppler beat frequency tracking model [J]. Optics Communications, 2019, 430: 163-169. doi:  10.1016/j.optcom.2018.08.013
[73] Zhang S H, Xu Z Y, Chen B Y, et al. Sinusoidal phase modulating absolute distance measurement interferometer combining frequency-sweeping and multiwavelength interferometry [J]. Optics Express, 2018, 26(7): 9273-9284. doi:  10.1364/OE.26.009273
[74] Barwood G P, Gill P, Rowley W R C. High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes [J]. Measurement Science and Technology, 1998, 9(7): 1036-1041. doi:  10.1088/0957-0233/9/7/005
[75] Zhang F M, Li Y T, Pan H, et al. Vibration compensation of the frequency-scanning-interferometry-based absolute ranging system [J]. Applied Sciences, 2019, 9(1): 147. doi:  10.3390/app9010147
[76] Shao B, Zhang W, Zhang P, et al. Dynamic clearance measurement using fiber-optic frequency-swept and frequency-fixed interferometry [J]. IEEE Photonics Technology Letters, 2020, 32(20): 1331-1334. doi:  10.1109/LPT.2020.3023006
[77] Shang Y, Lin J R, Yang L H, et al. Precision improvement in frequency scanning interferometry based on suppression of the magnification effect [J]. Optics Express, 2020, 28(4): 5822-5834. doi:  10.1364/OE.385357
[78] Koshikiya Y, Fan X Y, Ito F, et al. High resolution PNC-OFDR with suppressed fading noise for dispersive media measurement [J]. Journal of Lightwave Technology, 2013, 31(6): 866-873. doi:  10.1109/JLT.2013.2238505
[79] Wojtkowski M, Srinivasan V J, Ko, T H, et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation [J]. Optics Express, 2004, 12(11): 2404-2422. doi:  10.1364/OPEX.12.002404
[80] Barber Z W, Babbitt W R, Kaylor B, et al. Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar [J]. Applied Optics, 2010, 49(2): 213-219. doi:  10.1364/AO.49.000213
[81] Barber Z W, Giorgetta F R, Roos P A, et al. Characterization of an actively linearized ultrabroadband chirped laser with a fiber-laser optical frequency comb [J]. Optics Letters, 2011, 36(7): 1152-1154. doi:  10.1364/OL.36.001152
[82] Xu X K, Liu G D, Chen F D, et al. Research on the fiber dispersion and compensation in large-scale highresolution broadband frequencymodulated continuous wave laser measurement system [J]. Optical Engineering, 2015, 54(7): 074102. doi:  10.1117/1.OE.54.7.074102
[83] Xu X K, Liu G D, Liu B G, et al. High-resolution laser frequency scanning interferometer based on fiber dispersion phase compensation [J]. Acta Physica Sinica, 2015, 64(21): 219501. (in Chinese) doi:  10.7498/aps.64.219501
[84] Pan H, Qu X H, Shi C Z, et al. Resolution-enhancement and sampling error correction based on molecular absorption line in frequency scanning interferometry [J]. Optics Communications, 2018, 416: 214-220. doi:  10.1016/j.optcom.2018.02.006
[85] Shi G, Hei K, Wang W, et al. High precision FSI for absolute distance measurement using a tunable laser with sweeping range of 88 GHz [J]. Measurement Science and Technology, 2019, 31(4): 109293.
[86] Gibson S M, Coe P A, Mitra A, et al. Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry [J]. Optics and Lasers in Engineering, 2005, 43(7): 815-831. doi:  10.1016/j.optlaseng.2004.09.001
[87] Gao F, Muhamedsalih H, Jiang X Q. Surface and thickness measurement of a transparent film using wavelength scanning interferometry [J]. Optics Express, 2012, 20(19): 21450-21456. doi:  10.1364/OE.20.021450
[88] Chen T X, Yang H J, Riles K, et al. High-precision absolute coordinate measurement using frequency scanned interferometry [J]. Journal of Instrumentation, 2014, 9(3): P03001. doi:  10.1088/1748-0221/9/03/P03001
[89] Gabai H, Steinberg I, Eyal A. Multiplexing of fiber-optic ultrasound sensors via swept frequency interferometry [J]. Optics Express, 2015, 23(15): 18915-18924. doi:  10.1364/OE.23.018915
[90] Ohno S, Iida D, Toge K, et al. High-resolution measurement of differential mode delay of few-mode fiber using phase reference technique for swept-frequency interferometry [J]. Optical Fiber Technology, 2018, 40: 56-61. doi:  10.1016/j.yofte.2017.10.007
[91] Kim I, Martins R J, Jang J, et al. Nanophotonics for light detection and ranging technology [J]. Nature Nanotechnology, 2021, 16: 508-524. doi:  10.1038/s41565-021-00895-3