[1] Sun Shufeng, Wang Pingping. Micro/nano structures fabricated by two-photon photopolymerization of femtosecond laser [J]. Infrared and Laser Engineering, 2018, 47(12): 1206009. (in Chinese) doi:  10.3788/IRLA201847.1206009
[2] Gross S, Riesen N, Love J D, et al. Three-dimensional ultra-broadband integrated tapered mode multiplexers [J]. Laser & Photonics Reviews, 2014, 8(5): L81-L85. doi:  10.1002/lpor.201400078
[3] Gross S, Withford M J. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications [J]. Nanophotonics, 2015, 4(3): 332-352. doi:  10.1515/nanoph-2015-0020
[4] Li Zhiming, Wang Xi, Nie Jinsong, et al. High frequency femtosecond laser induced periodic spatial structure on silicon surface [J]. Infrared and Laser Engineering, 2018, 47(1): 0106003. (in Chinese) doi:  10.3788/IRLA201847.0106003
[5] Zhang Bin, Li Ziqi, Wang Lei, et al. Research advances in laser crystal optical waveguides fabricated by femtosecond laser direct writing [J]. Laser & Optoelectronics Progress, 2020, 57(11): 111415. doi:  10.3788/LOP57.111415
[6] Yu F, Zhang X L, Tian Z N, et al. General rules governing the dynamical encircling of an arbitrary number of exceptional points [J]. Physical Review Letters, 2021, 127(25): 253901. doi:  10.1103/PhysRevLett.127.253901
[7] Ocier C R, Richards C A, Bacon-Brown D A, et al. Direct laser writing of volumetric gradient index lenses and waveguides [J]. Light: Science & Applications, 2020, 9(1): 196. doi:  10.1038/s41377-020-00431-3
[8] Cerjan A, Wang M, Huang S. Thouless pumping in disordered photonic systems [J]. Light: Science & Applications, 2020, 9(1): 178. doi:  10.1038/s41377-020-00408-2
[9] Goi E, Zhang Q, Chen X, et al. Perspective on photonic memristive neuromorphic computing [J]. PhotoniX, 2020, 1(1): 3. doi:  10.1186/s43074-020-0001-6
[10] Zhang Y, Wu J, Wang L, et al. Femtosecond laser direct writing of Nd: YAG waveguide with Type I modification: Positive refractive index change in track [J]. Optical Materials, 2021, 113: 110844. doi:  10.1016/j.optmat.2021.110844
[11] Shams El-Din M A, Koerdt M, Wochnowski C, et al. Investigation of a UV-laser generated waveguide in a planar polymer chip using an improved interferometric method [J]. Optics and Lasers in Engineering, 2012, 50(3): 405-412. doi:  10.1016/j.optlaseng.2011.10.015
[12] Park J, Lee B. An Approximate formula of the effective refractive index of the metal-insulator-metal surface plasmon polariton waveguide in the infrared region [J]. Japanese Journal of Applied Physics, 2008, 47(11): 8449-8451. doi:  10.1143/JJAP.47.8449
[13] Tsai W S, Ting S Y, Wei P K. Refractive index profiling of an optical waveguide from the determination of the effective index with measured differential fields [J]. Opt Express, 2012, 20(24): 26766-26777. doi:  10.1364/OE.20.026766
[14] Popescu V A. Determination of propagation constants in a Ti: LiNbO3 optical waveguide by using finite element and variational methods [J]. Optics Communications, 2005, 250(4): 274-279.
[15] Homoelle D, Wielandy S, Gaeta A L, et al. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses [J]. Optics Letters, 1999, 24(18): 1311-1313. doi:  10.1364/OL.24.001311
[16] Dattner Y, Yadid-Pecht O. Analysis of the effective refractive index of silicon waveguides through the constructive and destructive interference in a Mach-Zehnder interferometer [J]. IEEE Photonics Journal, 2011, 3(6): 1123-1132. doi:  10.1109/JPHOT.2011.2171678
[17] Matthias W, Jonas B, Stefan N, et al. Measurement of fs laser-induced refractive index changes using an integrated optical interferometer [C]//SPIE, 2003, 4978: 214-221.