[1] Wu Qingyang, Zeng Zeng, Zhang Baichun, et al. A new 360° three-dimensional measurement system and calibration technology [J]. Chinese Journal of Lasers, 2017, 44(4): 142−149. (in Chinese)
[2] Lohry W, Zhang Song. High-speed absolute three-dimensional shape measurement using three binary dithered patterns [J]. Optics Express, 2014, 22(22): 26752−26762. doi:  10.1364/OE.22.026752
[3] Peng Xiang, Yin Yongkai, Liu Xiaoli, et al. Phase-assisted three-dimensional digital imaging and measurement [J]. Acta Optica Sinica, 2011, 3(9): 181−193. (in Chinese)
[4] Wang Yu, Zhang Xu, Li Chen, et al. Research on 3D measurement method based on light field imaging [J]. Chinese Journal of Scientific Instrument, 2015, 36(6): 1311−1318. (in Chinese)
[5] Zhu Xinjun, Deng Yaohui, Tang Chen, et al. Variational modal decomposition for phase retrieval in fringe projection 3D shape measurement [J]. Optics and Precision Engineering, 2016, 24(9): 2318−2324. (in Chinese) doi:  10.3788/OPE.20162409.2318
[6] Wang Zhangying, Zhang Zonghua, Gao Nan, et al. Single-shot 3D shape measurement of discontinuous objects based on coaxial fringe projection system [J]. Applied Optics, 2019, 58(5): 169−178. doi:  10.1364/AO.58.00A169
[7] Gorthi S S, Rastogi P. Fringe projection techniques: whither we are? [J]. Optics and Lasers in Engineering, 2010, 48(2): 133−140. doi:  10.1016/j.optlaseng.2009.09.001
[8] Xing Wei, Zhang Fumin, Feng Wei, et al. High-gloss surface 3D measurement method based on digital micromirror devices [J]. Acta Optica Sinica, 2017, 37(12): 193−199. (in Chinese)
[9] Sun Shijie, Zhai Aiping, Cao Yiping. An algorithm for fast acquisition of three-dimensional shape and texture information of objects [J]. Acta Optica Sinica, 2016, 36(3): 91−96. (in Chinese)
[10] Zheng Hongbo, Ho Yosung, Liu K. Three dimensional imaging method of structured light for highly reflective objects [J]. Laser and Optoelectronics Progress, 2019, 56(05): 133−140. (in Chinese)
[11] Zhang Zonghua, Wang Yuemin, Huang Shujun J, et al. Three-dimensional shape measurements of specular objects using phase-measuring deflectometry [J]. Sensors, 2017, 17(12): 2835. doi:  10.3390/s17122835
[12] Guo Chunfeng, Lin Xiaoyan, Hu A, et al. Improved phase-measuring deflectometry for aspheric surfaces test [J]. Applied Optics, 2016, 55(8): 2059−2064. doi:  10.1364/AO.55.002059
[13] Huang Minshuang. Time-of-flight laser ranging technique of single transmitted pulse [J]. Laser and Optoelectronics Progress, 2017, 54(12): 63−69. (in Chinese)
[14] Su Xianyu, Zhang Qican, Chen Wenjing. Structured light three-dimensional imaging technology [J]. Chinese Journal of Lasers, 2014, 41(2): 1−10. (in Chinese)
[15] Ou Pan, Wang Ting, Li Ruixiang. A 3D dental measurement system based on structured light [J]. Laser and Optoelectronics Progress, 2016, 53(1): 115−119. (in Chinese)
[16] Li Taotao, Yang Feng, Xu Xianlei. Method of large-scale measurement based on multi-vision line structured light sensor [J]. Chinese Journal of Lasers, 2017, 44(11): 130−140. (in Chinese)
[17] Zheng Lubin, Wang Xiaodong, Yan Fei. 3D reconstruction method based on linear-structured light stripe for welding seam [J]. Laser and Optoelectronics Progress, 2014, 51(4): 118−124. (in Chinese)
[18] Palousek D, Omasta M, Koutny D, et al. Effect of matte coating on 3D optical measurement accuracy [J]. Optical Materials, 2015, 40: 1−9. doi:  10.1016/j.optmat.2014.11.020
[19] Du Lin, Sun Huayan, Wang Shuai, et al. High dynamic range image fusion algorithm for dynamic targets [J]. Acta Optica Sinica, 2017, 37(4): 101−109. (in Chinese)
[20] Fu Zhengfang, Zhu Hong, Xue Shan, et al. Multi-exposure image direct fusion algorithm based on Sigmoid function fitting [J]. Chinese Journal of Scientific Instrument, 2015, 36(10): 2321−2329. (in Chinese)
[21] Blais F. Review of 20 years of range sensor development [C]//Proceedings of SPIE , 2003 , 5013(1): 228-240.
[22] Lin Hui, Gao Jian, Zhang Guanjin, et al. Review and comparison of high-dynamic range three-dimensional shape measurement techniques [J]. Journal of Sensors, 2017, 2017(Pt.2): 1−11.
[23] Sansoni G, Trebeschi M, Doccchio F. State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation [J]. Sensors, 2009, 9(1): 568−601. doi:  10.3390/s90100568
[24] Ma Zelong, Gao Huibin, Yu Yi, et al. High-speed camera automatic exposure method using image histogram feature function [J]. Optics and Precision Engineering, 2017, 25(4): 1026−1035. (in Chinese) doi:  10.3788/OPE.20172504.1026
[25] Huang Kuidong, Zhang Dinghua, Li Mingjun, et al. Exposure parameter modeling and rapid optimization method for DR/CT imaging system [J]. Chinese Journal of Scientific Instrument, 2013, 34(5): 981−986. (in Chinese)
[26] Zhang Song, Yau S T. High dynamic range scanning technique [J]. Optical Engineering, 2009, 48(3): 033604. doi:  10.1117/1.3099720
[27] Liu Guihua, Liu Xianyong, Feng Quanyuan. 3D shape measurement of objects with high dynamic range of surface reflectivity [J]. Applied Optics, 2011, 50(23): 4557−4565. doi:  10.1364/AO.50.004557
[28] Feng Shijie, Zhang Yuzhen, Chen Qian, et al. General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique [J]. Optics and Lasers in Engineering, 2014, 59(59): 56−71.
[29] Zhong Kai, Li Zhongwei, Zhou Xiaohui, et al. Enhanced phase measurement profilometry for industrial 3D inspection automation [J]. International Journal of Advanced Manufacturing Technology, 2015, 76(9-12): 1563−1574. doi:  10.1007/s00170-014-6360-z
[30] Jiang Hongzhi, Zhao Huijie, Li Xudong. High dynamic range fringe acquisition: a novel 3-D scanning technique for high-reflective surfaces [J]. Optics and Lasers in Engineering, 2012, 50(10): 1484−1493. doi:  10.1016/j.optlaseng.2011.11.021
[31] Rao Li, Da Feifeng. High dynamic range 3D shape determination based on automatic exposure selection [J]. Journal of Visual Communication and Image Representation, 2018, 50: 217−226. doi:  10.1016/j.jvcir.2017.12.003
[32] Zhao Huijie, Liang Xiaoyue, Diao Xiaochun, et al. Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector [J]. Optics and Lasers in Engineering, 2014, 54(1): 170−174.
[33] Feng Wei, Zhang Fumin, Wang Weijing, et al. Adaptive high dynamic range imaging method based on digital micromirror device and its application [J]. Acta Physica Sinica, 2017, 66(23): 234201. (in Chinese)
[34] Suresh V, Wang Yajun, Li Beiwen. High-dynamic-range 3D shape measurement utilizing the transitioning state of digital micromirror device [J]. Optics and Lasers in Engineering, 2018, 107: 176−181. doi:  10.1016/j.optlaseng.2018.03.030
[35] Chang Meng, Feng Huajun, Xu Zhihai, et al. Exposure correction and detail enhancement for single LDR image [J]. Acta Photonica Sinica, 2018, 47(4): 0410003. (in Chinese) doi:  10.3788/gzxb20184704.0410003
[36] Liu Xinlong, Yi Hongwei. Improved multi-exposure image fusion method [J]. Acta Photonica Sinica, 2019, 48(8): 0810002. (in Chinese) doi:  10.3788/gzxb20194808.0810002
[37] Waddington C, Kofman J. Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting [J]. Optics and Lasers in Engineering, 2010, 48(2): 251−256. doi:  10.1016/j.optlaseng.2009.07.001
[38] Waddington C, Kofman J. Modified sinusoidal fringe pattern projection for variable illuminance in phase-shifting three-dimensional surface-shape metrology [J]. Optical Engineering, 2014, 53(8): 084109. doi:  10.1117/1.OE.53.8.084109
[39] Kofman J. Saturation avoidance by adaptive fringe projection in phase-shifting 3D surface-shape measurement[C]//IEEE International Symposium on Optomechatronic Technologies, IEEE, 2010: 1−4.
[40] Waddington C, Kofman J. Camera-independent saturation avoidance in measuring high-reflectivity-variation surfaces using pixel-wise composed images from projected patterns of different maximum gray level [J]. Optics Communications, 2014, 333: 32−37. doi:  10.1016/j.optcom.2014.07.039
[41] Chen Chao, Gao Nan, Wang Xiangjun, et al. Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement [J]. Optics Communications, 2018, 410: 694−702. doi:  10.1016/j.optcom.2017.11.009
[42] Li Dong, Kofman J. Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement [J]. Optics Express, 2014, 22(8): 9887−9901. doi:  10.1364/OE.22.009887
[43] Babaie G, Abolbashari M, Farahi F. Dynamics range enhancement in digital fringe projection technique [J]. Precision Engineering, 2015, 39: 243−251. doi:  10.1016/j.precisioneng.2014.06.007
[44] Lin Hui, Gao Jian, Mei Qing, et al. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement [J]. Optics Express, 2016, 24(7): 7703−7718. doi:  10.1364/OE.24.007703
[45] Li Shaoxu, Da Feipeng, Rao Li. Adaptive fringe projection technique for high-dynamic range three-dimensional shape measurement using binary search [J]. Optical Engineering, 2017, 56(9): 1.
[46] Chen Chao, Gao Nan, Wang Xiangjun, et al. Adaptive pixel-to-pixel projection intensity adjustment for measuring a shiny surface using orthogonal color fringe pattern projection [J]. Measurement Science and Technology, 2018, 29(5): 055203. doi:  10.1088/1361-6501/aab07a
[47] Zhang Chi, Xu Jing, Xi Ning, et al. A robust surface coding method for optically challenging objects using structured light [J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(3): 775−788. doi:  10.1109/tase.2013.2293576
[48] Riviere J, Reshetouski I, Filipi L, et al. Polarization imaging reflectometry in the wild [J]. ACM Transactions on Graphics, 2017, 36(6): 1−14.
[49] Chen Tongbo, Lensch H, Fuchs C, et al. Polarization and phase-shifting for 3D scanning of translucent objects[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007: 1-8.
[50] Liang R. Short wavelength and polarized phase shifting fringe projection imaging of translucent objects [J]. Optical Engineering, 2014, 53(1): 014104. doi:  10.1117/1.OE.53.1.014104
[51] Li Feng, Liu Jiantao, Cai Jiajia. Surface shape measurement of mirror-like objects based on structured light method [J]. Chinese Journal of Electron Devices, 2014, 37(5): 882−886. (in Chinese)
[52] Salahieh B, Chen Zhenyue, Rodriguez J J, et al. Multi-polarization fringe projection imaging for high dynamic range objects [J]. Optics Express, 2014, 22(8): 10064−10071. doi:  10.1364/OE.22.010064
[53] Hao Jinglei, Zhao Yongqiang, Zhao Haimeng, et al. 3D reconstruction of high-reflective and textureless targets bases on multispectral polarization and machine vision [J]. Journal of Surveying and Mapping, 2018, 47(6): 816−824. (in Chinese)
[54] Shafers A. Using color to separate reflection components [J]. Color Research and Application, 1985, 10(4): 210−218. doi:  10.1002/col.5080100409
[55] Tan R T, Nishino K, Ikeuchi K. Separating reflection components based on chromaticity and noise analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(10): 1373−1379. doi:  10.1109/TPAMI.2004.90
[56] Gevers T, Smeulders A W M. Color-based object recognition [J]. Pattern Recognition, 1999, 32(3): 453−464.
[57] Benveniste R, Unsalan C. Single stripe projection based range scanning of shiny objects under ambient light[C]//IEEE International Symposium on Computer and Information Sciences, 2009: 1−6.
[58] Benveniste R, Unsalan C. A color invariant based binary coded structured light range scanner for shiny objects[C]//IEEE International Conference on Pattern Recognition, 2010: 798−801.
[59] Benveniste R, Unsalan C. Binary and ternary coded structured light 3D scanner for shiny objects [J]. Lecture Notes in Electrical Engineering, 2010, 62: 241−244.
[60] Benveniste R, Unsalan C. A color invariant for line stripe based range scanners [J]. Computer Journal, 2011, 54(5): 738−753. doi:  10.1093/comjnl/bxq014
[61] Benveniste R, Unsalan C. Nary coded structured light based range scanners using color invariants [J]. Journal of Real Time Image Processing, 2014, 9(2): 359−377. doi:  10.1007/s11554-011-0235-4
[62] Woodham R J. Photometric method for determining surface orientation from multiple images [J]. Optical Engineering, 1992, 19: 1−22. doi:  10.1080/03052159208941217
[63] Lu Liang, Qi Lin, Luo Yisong, et al. Three-dimensional reconstruction from single image base on combination of cnn and multi-spectral photometric stereo [J]. Sensors, 2018, 18(3): 764. doi:  10.3390/s18030764
[64] Yang Yufeng, Wu Zhensen, Cao Yunhua. Scattering characteristics of complex background infrared radiation from a non-lambertian targets [J]. Infrared and Laser Engineering, 2011, 40(5): 800−804. (in Chinese)
[65] Meng Lingfei, Lu Liyang, Bedard N, et al. Single-shot specular surface reconstruction with gonio-plenoptic imaging[C]//IEEE International Conference on Computer Vision, 2016: 3433-3441.
[66] Shi Boxin, Mo Zhiping, Wu Zhe, et al. A benchmark dataset and evaluation for non-lambertian and uncalibrated photometric stereo [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2): 271−484. doi:  10.1109/TPAMI.2018.2799222
[67] Mattino F, Patruno C, Mosca N, et al. Material recognition by feature classification using time-of-flight camera [J]. Journal of Electronic Imaging, 2019, 41(2): 271−484.
[68] Logothetis F, Mecca R, Cipolla R. Semi-calibrated near field photometric stereo[C]//IEEE Computer Vision and Pattern Recognition, 2017: 4521−4530.
[69] Midorikawa K, Yamaskaki T, Aizawa K. Uncalibrated photometric stereo by stepwise optimization using principal components of isotropic BRDFs[C]//IEEE Computer Vision and Pattern Recognition, 2016: 4350−4358.
[70] Li Changjiang, Zhang Zhong, Imamura T, et al. An efficient BRDF acquisition for glossy surface[C]//IEEE International Conference on Advanced Computer Theory and Engineering, 2010: V2-141−V2-145.
[71] Goldman D B, Curless B, Hertzmann A, et al. Shape and spatially-varying BRDFs from photometric stereo [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(6): 1060−1071. doi:  10.1109/TPAMI.2009.102
[72] Chung Hinshun, Jia Jiaya. Efficient photometric stereo on glossy surfaces with wide specular lobes[C]//IEEE Computer Vision and Pattern Recognition, 2008: 1−8.
[73] Georghiades A S. Recovering 3-D shape and reflectance from a small number of photographs[C]//14th Eurographics Workshop on Rendering Techniques, DBLP, 2003: 230−240.
[74] Chen Songlin, Xia Renbo, Zhao Jibin. Analysis and reduction of phase errors caused by nonuniform surface reflectivity in a phase-shifting measurement system [J]. Optical Engineering, 2017, 56(3): 033102. doi:  10.1117/1.OE.56.3.033102
[75] Kowarschik R, Kuhmstedt P, Gerber J, et al. Adaptive optical three-dimensional measurement with structured light [J]. Optical Engineering, 2000, 39(1): 150−158. doi:  10.1117/1.602346
[76] Jeong J, Hong D, Cho H. Measurement of partially specular objects by controlling imaging range[C]//Proceedings of SPIE, 2007, 6718: 671808.
[77] Feng Wei, Zhang Fumin, Qu Xinghua, et al. Per-pixel coded exposure for high-speed and high-resolution imaging using a digital micromirror device camera [J]. Sensors, 2016, 16(3): 331. doi:  10.3390/s16030331
[78] Song Zhan, Chung R, Zhang Xiaoting. An accurate and robust strip-edge-based structured light means for shiny surface micro measurement in 3-D [J]. IEEE Transactions on Industrial Electronics, 2013, 60(3): 1023−1032. doi:  10.1109/TIE.2012.2188875
[79] Zhao Jing, Wang Yongchang, Liu Kai. A method to suppress the saturation error of phase measurement profilometry [J]. Chinese Journal of Lasers, 2013, 40(10): 180−187. (in Chinese)
[80] Jiang Chufan, Bell T, Zhang Song. High dynamic range real-time 3D shape measurement [J]. Optics Express, 2016, 24(7): 7337−7346. doi:  10.1364/OE.24.007337