[1] Ntziachristos V. Going deeper than microscopy: The optical imaging frontier in biology [J]. Nature Methods, 2010, 7(8): 603-614. doi:  10.1038/nmeth.1483
[2] Zhu Lei, Shao Xiaopeng. Research progress on scattering imaging technology [J]. Acta Optica Sinica, 2020, 40(1): 0111005. (in Chinese)
[3] 吴腾飞. 基于光学记忆效应的非侵入式散射成像 方法研究[D].西安: 西安电子科技大学, 2018: 1-18.

Wu Tengfei. Non-invasive scattering imaging methods based on optical memory effect[D].Xi’an: Xidian University, 2018: 1-18. (in Chinese)
[4] Tomita Y, Nakagawa K, Asakura T. Fibrous radial structure of speckle patterns in polychromatic light [J]. Applied Optics, 1980, 19(18): 3211-3218. doi:  10.1364/AO.19.003211
[5] Jin Xin, Wang Xiaoyu, Du Dongyu, et al. Progress and prospect of scattering imaging [J]. Laser & Optoelectronics Progress, 2021, 58(18): 1811002. (in Chinese)
[6] Jiang Wenhan. Adaptive optical technology [J]. Chinese Journal of Nature, 2006, 28(1): 7-13. (in Chinese)
[7] Zhong Wei, Zhang Xiaohui, Guan Feng, et al. Underwater full range-gated imaging radar based on high repetition-rate pulse laser [J]. Chinese Journal of Lasers, 2016, 43(11): 1101009. (in Chinese) doi:  10.3788/CJL201643.1101009
[8] He K, Sun J, Tang X. Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(12): 2341-2353.
[9] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography [J]. Science, 1991, 254(5035): 1178-1181. doi:  10.1126/science.1957169
[10] Webb R H. Confocal optical microscopy [J]. Reports on Progress in Physics, 1996, 59(3): 427. doi:  10.1088/0034-4885/59/3/003
[11] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy [J]. Science, 1990, 248(4951): 73-76. doi:  10.1126/science.2321027
[12] Helmchen F, Denk W. Deep tissue two-photon microscopy [J]. Nature Methods, 2005, 2(12): 932-940. doi:  10.1038/nmeth818
[13] Zhang H F, Maslov K, Stoica G, et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging [J]. Nature Biotechnology, 2006, 24(7): 848-851. doi:  10.1038/nbt1220
[14] Wang L V. Multiscale photoacoustic microscopy and computed tomography [J]. Nature Photonics, 2009, 3(9): 503-509. doi:  10.1038/nphoton.2009.157
[15] Ale A, Ermolayev V, Herzog E, et al. FMT-XCT: In vivo animal studies with hybrid fluorescence molecular tomography–X-ray computed tomography [J]. Nature Methods, 2012, 9(6): 615-620. doi:  10.1038/nmeth.2014
[16] Razansky D, Buehler A, Ntziachristos V. Volumetric real-time multispectral optoacoustic tomography of biomarkers [J]. Nature Protocols, 2011, 6(8): 1121-1129. doi:  10.1038/nprot.2011.351
[17] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media [J]. Optics Letters, 2007, 32(16): 2309-2311. doi:  10.1364/OL.32.002309
[18] Vellekoop I M, Lagendijk A, Mosk A P. Exploiting disorder for perfect focusing [J]. Nature Photonics, 2010, 4(5): 320-322. doi:  10.1038/nphoton.2010.3
[19] Stasio N, Conkey D B, Moser C, et al. Light control in a multicore fiber using the memory effect [J]. Optics Express, 2015, 23(23): 30532-30544. doi:  10.1364/OE.23.030532
[20] Cui M. Parallel wavefront optimization method for focusing light through random scattering media [J]. Optics Letters, 2011, 36(6): 870-872. doi:  10.1364/OL.36.000870
[21] Popoff S M, Lerosey G, Fink M, et al. Controlling light through optical disordered media: transmission matrix approach [J]. New Journal of Physics, 2011, 13(12): 123021. doi:  10.1088/1367-2630/13/12/123021
[22] Popoff S, Lerosey G, Fink M, et al. Image transmission through an opaque material [J]. Nature Communications, 2010, 1(1): 1-5.
[23] Choi Y, Yang T D, Fang-Yen C, et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium [J]. Physical Review Letters, 2011, 107(2): 023902. doi:  10.1103/PhysRevLett.107.023902
[24] Yaqoob Z, Psaltis D, Feld M S, et al. Optical phase conjugation for turbidity suppression in biological samples [J]. Nature Photonics, 2008, 2(2): 110-115. doi:  10.1038/nphoton.2007.297
[25] Bertolotti J, Van Putten E G, Blum C, et al. Noninvasive imaging through opaque scattering layers [J]. Nature, 2012, 491(7423): 232-234. doi:  10.1038/nature11578
[26] Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations [J]. Nature Photonics, 2014, 8(10): 784-790. doi:  10.1038/nphoton.2014.189
[27] Sun Y, Shi J, Sun L, et al. Image reconstruction through dynamic scattering media based on deep learning [J]. Optics Express, 2019, 27(11): 16032-16046. doi:  10.1364/OE.27.016032
[28] Li Y, Xue Y, Tian L. Deep speckle correlation: A deep learning approach toward scalable imaging through scattering media [J]. Optica, 2018, 5(10): 1181-1190. doi:  10.1364/OPTICA.5.001181
[29] Lerosey G, De Rosny J, Tourin A, et al. Focusing beyond the diffraction limit with far-field time reversal [J]. Science, 2007, 315(5815): 1120-1122. doi:  10.1126/science.1134824
[30] Edrei E, Scarcelli G. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect [J]. Optica, 2016, 3(1): 71-74. doi:  10.1364/OPTICA.3.000071
[31] Singh A K, Naik D N, Pedrini G, et al. Exploiting scattering media for exploring 3 D objects [J]. Light: Science & Applications, 2017, 6(2): e16219.
[32] Salhov O, Weinberg G, Katz O. Depth-resolved speckle-correlations imaging through scattering layers via coherence gating [J]. Optics Letters, 2018, 43(22): 5528-5531. doi:  10.1364/OL.43.005528
[33] Stern G, Katz O. Noninvasive focusing through scattering layers using speckle correlations [J]. Optics Letters, 2019, 44(1): 143-146. doi:  10.1364/OL.44.000143
[34] Okamoto Y, Horisaki R, Tanida J. Noninvasive three-dimensional imaging through scattering media by three-dimensional speckle correlation [J]. Optics Letters, 2019, 44(10): 2526-2529. doi:  10.1364/OL.44.002526
[35] He H, Guan Y, Zhou J. Image restoration through thin turbid layers by correlation with a known object [J]. Optics Express, 2013, 21(10): 12539-12545. doi:  10.1364/OE.21.012539
[36] He H, Wong K S. An improved wavefront determination method based on phase conjugation for imaging through thin scattering medium [J]. Journal of Optics, 2016, 18(8): 085604. doi:  10.1088/2040-8978/18/8/085604
[37] Li H, Wu T, Liu J, et al. Simulation and experimental verification for imaging of gray-scale objects through scattering layers [J]. Applied Optics, 2016, 55(34): 9731-9737. doi:  10.1364/AO.55.009731
[38] Qiao M, Liu H, Pang G, et al. Non-invasive three-dimension control of light between turbid layers using a surface quasi-point light source for precorrection [J]. Scientific Reports, 2017, 7(1): 1-8. doi:  10.1038/s41598-016-0028-x
[39] Wu T, Katz O, Shao X, et al. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis [J]. Optics Letters, 2016, 41(21): 5003-5006. doi:  10.1364/OL.41.005003
[40] Wu T, Dong J, Shao X, et al. Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity [J]. Optics Express, 2017, 25(22): 27182-27194. doi:  10.1364/OE.25.027182
[41] Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media [J]. Physical Review Letters, 1988, 61(20): 2328. doi:  10.1103/PhysRevLett.61.2328
[42] Feng S, Kane C, Lee P A, et al. Correlations and fluctuations of coherent wave transmission through disordered media [J]. Physical Review Letters, 1988, 61(7): 834. doi:  10.1103/PhysRevLett.61.834
[43] Xie Xiangsheng, Liu Yikun, Liang Haowen, et al. Speckle correlation imaging: From point spread functions to light field plenoptics [J]. Acta Optica Sinica, 2020, 40(1): 0111004. (in Chinese) doi:  10.3788/AOS202040.0111004
[44] Judkewitz B, Horstmeyer R, Vellekoop I M, et al. Translation correlations in anisotropically scattering media [J]. Nature Physics, 2015, 11(8): 684-689. doi:  10.1038/nphys3373
[45] Osnabrugge G, Horstmeyer R, Papadopoulos I N, et al. Generalized optical memory effect [J]. Optica, 2017, 4(8): 886-892. doi:  10.1364/OPTICA.4.000886
[46] Zhu L, de Monvel J B, Berto P, et al. Chromato-axial memory effect through a forward-scattering slab [J]. Optica, 2020, 7(4): 338-345. doi:  10.1364/OPTICA.382209
[47] Andreoli D, Volpe G, Popoff S, et al. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix [J]. Scientific Reports, 2015, 5(1): 1-8. doi:  10.9734/JSRR/2015/14076
[48] Vesga A G, Hofer M, Balla N K, et al. Focusing large spectral bandwidths through scattering media [J]. Optics Express, 2019, 27(20): 28384-28394. doi:  10.1364/OE.27.028384
[49] Liu H, Liu Z, Chen M, et al. Physical picture of the optical memory effect [J]. Photonics Research, 2019, 7(11): 1323-1330. doi:  10.1364/PRJ.7.001323
[50] Wang X, Liu H, Chen M, et al. Imaging through dynamic scattering media with stitched speckle patterns [J]. Chinese Optics Letters, 2020, 18(4): 042604. doi:  10.3788/COL202018.042604
[51] Xie X, He Q, Liu Y, et al. Non-invasive optical imaging using the extension of the Fourier–domain shower–curtain effect [J]. Optics Letters, 2021, 46(1): 98-101. doi:  10.1364/OL.415181
[52] Lu T, Liu Y, Lin H, et al. Non-invasive imaging through dynamic scattering layers via speckle correlations [J]. Optical Review, 2021, 28(5): 557-563. doi:  10.1007/s10043-021-00691-3
[53] Cua M, Zhou E H, Yang C. Imaging moving targets through scattering media [J]. Optics Express, 2017, 25(4): 3935-3945. doi:  10.1364/OE.25.003935
[54] 李慧娟. 基于散射的大景深光学成像与运动目标 跟踪技术研究[D].西安电子科技大学, 2017.

Li Huijuan. Research on deep depth-of-field imaging and tracking of moving targets based on light scattering[D]. Xi’an: Xidian University, 2017.(in Chinese)
[55] Wang X, Hu C, Liu H, et al. Imaging and positioning through scattering media noninvasively by bi-directional exposure [J]. Journal of Optics, 2021, 23(2): 025602. doi:  10.1088/2040-8986/abe63a
[56] Guo C F, Liu J T, Wu T F, et al. Tracking moving targets behind a scattering medium via speckle correlation [J]. Applied Optics, 2018, 57(4): 905-913. doi:  10.1364/AO.57.000905
[57] Li W, Xi T L, He S F, et al. Single-shot imaging through scattering media under strong ambient light interference [J]. Optics Letters, 2021, 46(18): 4538-4541. doi:  10.1364/OL.438017
[58] He W Q, Wei Y C, Lu D J, et al. Noninvasive imaging of two isolated objects through a thin scattering medium beyond the 3D optical memory effect by speckle-based difference strategy [J]. Optica Letter, 2021, 46(23): 5954-5957. doi:  10.1364/OL.444605
[59] Ehira K, Horisaki R, Nishizaki Y, et al. Spectral speckle-correlation imaging [J]. Applied Optics, 2021, 60(8): 2388-2392. doi:  10.1364/AO.418361
[60] Zhu L, Wu Y X, Liu J T, et al. Color imaging through scattering media based on phase retrieval with triple correlation [J]. Optics and Lasers in Engineering, 2020, 124: 105796. doi:  10.1016/j.optlaseng.2019.105796
[61] Zheng S S, Liao M H, Wang F, et al. Non-line-offsight imaging under white-light illumination: A two-step deep learning approach [J]. Optics Express, 2021, 29(24): 40091-40105. doi:  10.1364/OE.443127
[62] Zhu S, Guo E L, Gu J, et al. Imaging through unknown scattering media based on physics-informed learning [J]. Photonics Research, 2021, 9(5): B210-B219. doi:  10.1364/PRJ.416551
[63] Sahoo S K, Tang D L, Dang C. Single-shot multispectral imaging with a monochromatic camera [J]. Optica, 2017, 4(10): 1209-1213. doi:  10.1364/OPTICA.4.001209
[64] Mukherjee S, Vijayakumar A, Kumar M, et al. 3D imaging through scatterers with interferenceless optical system [J]. Scientific Reports, 2018, 8(1): 1134.
[65] Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures [J]. Optik, 1972, 35: 237-246.
[66] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform [J]. Optics Letters, 1978, 3(1): 27-29. doi:  10.1364/OL.3.000027
[67] Fienup J R. Phase retrieval with continuous version of hybrid input-output[C]//Frontiers in Optics. Optical Society of America, 2003: ThI3.
[68] Zhao Nanxiang, Hu Yihua. Research of phase retrieval algorithm in laser reflective tomography imaging [J]. Infrared and Laser Engineering, 2019, 48(10): 1005005. (in Chinese) doi:  10.3788/IRLA201948.1005005
[69] Yang W, Li G, Situ G. Imaging through scattering media with the auxiliary of a known reference object [J]. Scientific Reports, 2018, 8(1): 9614.
[70] Wang X, Liu H L, Hu C Y, et al. Transmissive imaging through scattering media based on MultiWavelength illumination [J]. Acta Optica Sinica, 2020, 40(16): 1611002. (in Chinese) doi:  10.3788/AOS202040.1611002
[71] Newman J A, Luo Q, Webb K J. Imaging hidden objects with spatial speckle intensity correlations over object position [J]. Physical Review Letters, 2016, 116(7): 073902. doi:  10.1103/PhysRevLett.116.073902
[72] Wang X, Liu H, Han S. Imaging through scattering media with wide spectral illumination[C]//Optoelectronic Imaging and Multimedia Technology VⅡ. International Society for Optics and Photonics, 2020, 11550 : 1155007.
[73] Edrei E, Scarcelli G. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media [J]. Scientific Reports, 2016, 6(1): 33558.
[74] Zhuang H C, He H X, Xie X S, et al. High speed color imaging through scattering media with a large field of view [J]. Scientific Reports, 2016, 6(1): 32696.
[75] Sahoo S K, Tang D, Dang C. Single shot large field of view imaging with scattering media by spatial demultiplexing [J]. arXiv Preprint arXiv, 2017: 1707.09577.
[76] Xie X, Zhuang H, He H, et al. Extended depth-resolved imaging through a thin scattering medium with PSF manipulation [J]. Scientific Reports, 2018, 8(1): 4585.
[77] Li L, Li Q, Sun S, et al. Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function [J]. Optics Letters, 2018, 43(8): 1670-1673. doi:  10.1364/OL.43.001670
[78] Liao M, Lu D, Pedrini G, et al. Extending the depth-of-field of imaging systems with a scattering diffuser [J]. Scientific Reports, 2019, 9(1): 7165. doi:  10.1038/s41598-018-37186-2
[79] Wang Z, Jin X, Dai Q. Non-invasive imaging through strongly scattering media based on speckle pattern estimation and deconvolution [J]. Scientific Reports, 2018, 8(1): 9088.
[80] Xu X, Xie X, Thendiyammal A, et al. Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference [J]. Optics Express, 2018, 26(12): 15073-15083. doi:  10.1364/OE.26.015073
[81] Han P L, Liu F, Yang K, et al. Active underwater descattering and image recovery [J]. Applied Optics, 2017, 56(23): 6631-6638. doi:  10.1364/AO.56.006631
[82] Guo C F, Liu J T, Li W, et al. Imaging through scattering layers exceeding memory effect range by exploiting prior information [J]. Optics Communications, 2019, 434: 203-208. doi:  10.1016/j.optcom.2018.11.005
[83] Li W, Liu J T, He S F, et al. Multitarget imaging through scattering media beyond the 3 D optical memory effect [J]. Optics Letters, 2020, 45(10): 2692-2695. doi:  10.1364/OL.388552
[84] Wang X, Jin X, Li J, et al. Prior-information-free single-shot scattering imaging beyond the memory effect [J]. Optics Letters, 2019, 44(6): 1423-1426. doi:  10.1364/OL.44.001423
[85] Zhu L, Soldevila F, Moretti C, et al. Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination [J]. Nature Communications, 2022, 13(1): 1447. doi:  10.1038/s41467-021-27699-2
[86] Guo E, Zhu S, Sun Y, et al. Learning-based method to reconstruct complex targets through scattering medium beyond the memory effect [J]. Optics Express, 2020, 28(2): 2433-2446. doi:  10.1364/OE.383911
[87] Shi Y Y, Liu Y W, Sheng W, et al. Extending the imaging range through scattering layers to the entire correlation range [J]. Applied Optics, 2020, 59(6): 1633-1640. doi:  10.1364/AO.376902
[88] Postnov D D, Tang J, Erdener S E, et al. Dynamic light scattering imaging [J]. Science Advances, 2020, 6(45): eabc4628. doi:  10.1126/sciadv.abc4628
[89] Chen M, Liu H, Liu Z, et al. Expansion of the FOV in speckle autocorrelation imaging by spatial filtering [J]. Optics Letters, 2019, 44(24): 5997-6000. doi:  10.1364/OL.44.005997
[90] Hofer M, Brasselet S. Manipulating the transmission matrix of scattering media for nonlinear imaging beyond the memory effect [J]. Optics Letters, 2019, 44(9): 2137-2140. doi:  10.1364/OL.44.002137