[1] Diddams S A, Hollberg L, Mbele V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb [J]. Nature, 2019, 445(7128): 627-630. doi:  10.1038/nature05524
[2] Shi J, Wong T T W, He Y, et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy [J]. Nature Photonics, 2019, 13: 609-615. doi:  10.1038/s41566-019-0441-3
[3] Hwa L G, Chang Y R, Chao W C. Infrared spectra of lanthanum gallogermanate glasses [J]. Materials Chemistry and Physics, 2004, 85(1): 158-162. doi:  10.1016/j.matchemphys
[4] Stuart A D. Some applications of infrared optical sensing [J]. Sensors and Actuators B: Chemical, 1993, 11(1-3): 185-193. doi:  10.1016/0925-4005(93)85253-7
[5] Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb [J]. Nature Photonics, 2009, 3(2): 99-102. doi:  10.1038/nphoton
[6] Lin Z Y, Jia X Y, Wang C L, et al. Ionization suppression of diatomic molecules in an intense midinfrared laser field [J]. Physical Review Letters, 2012, 108(22): 223001. doi:  10.1103/Physrevlett.108.223001
[7] Walsh B M, Lee H R, Barnes N P. Mid infrared lasers for remote sensing applications [J]. Journal of Luminescence, 2016, 169: 400-405. doi:  10.1016/j.jlumin.2015.03.004
[8] Taccheo S. Fiber lasers for medical diagnostics and treatments: State of the art, challenges and future perspectives [C]//Proceedings of SPIE, 2017, 10058: 1005808.
[9] Jia Zhixu, Guo Xiaohui, Jiao Yadong, et al. Progress on mid-infrared Raman lasers based on special glass fibers (invited) [J]. Chinese Journal of Lasers, 2022, 49(1): 0101004. (in Chinese) doi:  10.3788/CJL202249.0101004
[10] Zhou Pu, Yao Tianfu, Fan Chenchen, et al. 50th anniversary of Raman fiber laser: History, progress and prospect (invited) [J]. Infrared and Laser Engineering, 2022, 51(1): 20220015. (in Chinese) doi:  10.3788/IRLA20220015
[11] Lines M E. The search for very low loss fiber-optic materials [J]. Science, 1984, 226(4675): 663-668. doi:  10.1126/science.226.4675.663
[12] Agrawal G P. Nonlinearfiber Optics[M]. New York: Academic Press, 2013.
[13] Glick Y K, Shamir Y, Aviel M, et al. 1.2 kW clad pumped Raman all-passive-fiber laser with brightness echancement [J]. Optics Letters, 2018, 43(19): 4755-475. doi:  10.1364/OL.43.004755
[14] Chen Y Z, Yao T F, Huang L J, et al. 2 kW high-efficiency Raman fiber amplifier based on passive fiber with dynamic analysis on beam cleanup and fluctuation [J]. Optics Express, 2020, 28(3): 3495-3504. doi:  10.1364/OE.383683
[15] Song J X, Ma P F, Ren S, et al. 2 kW narrow-linewidth Yb-Raman fiber amplifier [J]. Optics Letters, 2021, 46(10): 2404-2407. doi:  10.1364/OL.425714
[16] Supradeepa V R, Nicholson J W. Power scaling of high-efficiency 1.5 µm cascaded Raman fiber lasers [J]. Optics Letters, 2013, 38(14): 2538-2541. doi:  10.1364/OL.38.002538
[17] Zhang L, Dong J, Feng Y. High-power and high-order random Raman fiber lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1-6. doi:  10.1109/JSTQE.2017.2759261
[18] Fortin V, Bernier M, Faucher D, et al. 3.7 W fluoride glass Raman fiber laser operating at 2231 nm [J]. Optics Express, 2012, 20(17): 19412-19419. doi:  10.1364/OE.20.019412
[19] Tang Y, Wright L G, Charan K, et al. Generation of intense 100 fs solitons tunable from 2 to 4.3 µm in fluoride fiber [J]. Optica, 2016, 3(9): 948-951. doi:  10.1364/OPTICA.3.000948
[20] Bernier M, Fortin V, El-amraoui M, et al. 3.77 µm fiber laser based on cascaded Raman gain in Al chalcogenide glass fiber [J]. Optics Letters, 2014, 39(7): 2052-2055. doi:  10.1364/OL.39.002052
[21] Zhu G, Geng L, Zhu X, et al. Towards ten-watt-level 3-5 µm Raman lasers using tellurite fiber [J]. Optics Express, 2015, 23(6): 7559-7573. doi:  10.1364/OE.23.007559
[22] Anashkina E A, Dorofeev V V, Skobelev S A, et al. Microstructured fibers based on tellurite glass for nonlinear conversion of mid-IR ultrashort optical pulses [J]. Photonics, 2020, 7(3): 51. doi:  10.3390/photonics7030051
[23] Hou Y W, Wu Q, Liu F, et al. Numerical demonstration of the soliton self-frequency shift process beyond 8 µm in a tellurite-chalcogenide fiber cascaded structure [J]. IEEE Photonics Journal, 2022, 14(4): 1540412. doi:  10.1109/JPHOT.2022.3187862
[24] Chang P F, Luo H Y, Wu Q, et al. Tunable mid-infrared Raman soliton generation from 2.80 to 3.17 µm based on fluorotellurite fiber [J]. IEEE Photonics Technology Letters, 2022, 34(21): 1183-1186. doi:  10.1109/LPT.2022.3201024
[25] Liu Ruite, Jiang Yiguang, Zhang Longfei, et al. Mid-Infrared fluoride glass fibers – a short review [J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 1085-1099. (in Chinese) doi:  10.14062/j.issn.0454-5648.20211022
[26] Seed M. Heavy metal fluoride glass fibers and their applications [C]//Proc of SPIE, 2011, 8307: 83070N.
[27] Jia S J, Jia Z X, Yao C F, et al. 2875 nm lasing from Ho3+-doped fluoroindate glass fibers [J]. IEEE Photonics Technology Letters, 2018, 30(4): 323-326. doi:  10.1109/LPT.2017.2787119
[28] Maes F, Fortin V, Poulain S, et al. Room temperature fiber laser at 3.92 µm [J]. Optica, 2018, 5(7): 761-764. doi:  10.1364/OPTICA.5.000761
[29] Majewski M R, Woodward R I, Carreé J Y, et al. Emission beyond 4 µm and mid-infrared a dysprosium-doped indium fluoride (InF3) fiber [J]. Optics Letters, 2018, 43(8): 1926-1929. doi:  10.1364/OL.43.001926
[30] Jia S J, Jia Z X, Yao C F, et al. Ho3+ doped fluoroaluminate glass fibers for 2.9 µm lasing [J]. Laser Physics, 2018, 28: 015802. doi:  10.1088/1555-6611
[31] He H Y, Jia Z X, Jia S J, et al. Ho3+/Pr3+ co-doped AlF3 based glass fibers for efficient ~2.9 µm lasers [J]. IEEE Photonics Technology Letters, 2020, 32(23): 1489-1492. doi:  10.1109/LPT.2020.3037309
[32] Jia S J, Li C Z, Zhao Z P, et al. Er3+-doped ZnF2-BaF2-SrF2-YF3 fluoride glasses for 2.7 µm laser applications [J]. Materials Letters, 2018, 227: 97-99. doi:  10.1016/j.matlet.2018.05.062
[33] He H Y, Jia S J, Ohishi Y, et al. Efficient ~4 µm emission from Pr3+/Yb3+ co-doped fluoroindate glass [J]. Optics Letters, 2021, 46(22): 5607-5610. doi:  10.1364/OL.440635
[34] 姜益光, 管枫, 袁新强, 等. 氟化物中红外光纤[A]. 中国稀土学会光电材料与器件专业委员会、中国计量大学. 第二届全国光电材料与器件学术研讨会摘要集[C]//中国稀土学会光电材料与器件专业委员会、中国计量大学: 中国稀土学会, 2021: 1.

Jiang Yiguang, Guan Feng, Yuan Xinqiang, et al. Fluoride mid-infrared optical fiber [C]//Abstract Collection of the Second National Optoelectronic Materials and Devices Symposium, China Rare Earth Society, 2021. (in Chinese)
[35] 姜益光, 袁新强, 张龙. 中红外全氟化物玻璃光纤的制备研究[A]. 中国硅酸盐学会特种玻璃分会(CCS)、中国科学院上海光学精密机械研究所(SIOM). 第十届中国功能玻璃学术研讨会暨新型光电子材料国际论坛会议摘要集[C]//中国硅酸盐学会特种玻璃分会(CCS)、中国科学院上海光学精密机械研究所(SIOM): 中国硅酸盐学会, 2018: 1.

Jiang Yiguang, Yuan Xingqiang, Zhang long. Research on the preparation of mid-infrared perfluoride glass fiber [C]//The 10th China Functional Glass Symposium and New Optoelectronics Abstracts of International Forum on Materials, Chinese Ceramic Society, 2018. (in Chinese)
[36] Wang S B, Zhang J Q, Xu N N, et al. 2.9 µm lasing from a Ho3+/Pr3+ co-doped AlF3-based glass fiber pumped by a 1150 nm laser [J]. Optics Letters, 2020, 45(5): 1216-1219. doi:  10.1364/OL.384216
[37] Xu N N, Yang Z Y, Zhang J Q, et al. Direct femtosecond laser inscription of Bragg gratings in Ho3+/Pr3+ co-doped AlF3-based glass fibers for a 2.86 µm laser [J]. Optics Letters, 2022, 47(3): 597-600. doi:  10.1364/ol.448431
[38] Zhang J Q, Zhao H Y, Wang R C, et al. 3.9 µm emission in Nd3+ sensitized Ho3+ doped fluoroaluminate glasses [J]. Journal of Alloys and Compounds, 2021, 46(9): 2031-2034. doi:  10.1016/j.jallcom.2021.161684
[39] Zhang J, Wang R C, Liu M, et al. ZnF2-modified AlF3-based fluoride glasses with enhanced mid-infrared 3.5 μm emission [J]. Journal of the American Ceramic Society, 2022, 105(9): 4691-4698. doi:  10.1111/jace.18425
[40] Saïssy A, Botineau J, Macon L. Diffusion Raman dans une fibre optique en verre fluoré [J]. Journal de Physique Lettres, 1985, 46(6): 289-294. doi:  10.1051/jphuslet:01985004606028900
[41] Almeida R M, Mackenzie J D. Vibrational spectra and structure of fluorozirconate glasses [J]. Journal of Chemical Physics, 1981, 74(11): 5954-5961. doi:  10.1063/1.441033
[42] Durteste Y, Monerie M, Lamouler P. Raman amplification in fluoride glass fibres [J]. Electronics Letters, 1985, 21(17): 723-724. doi:  10.1049/el:19850510
[43] Almeida R M, Pereira J C, Messaddeq Y, et al. Vibrational spectra and structure of fluoroindate glasses [J]. Journal of Non-Crystalline Solids, 1993, 161: 105-108. doi:  10.1016/0022-3093(93)90678-Q
[44] Cheng T, Gao W, Xue X, et al. Fourth-order cascaded Raman shift in a birefringence ZBLAN fluoride fiber [J]. Optical Fiber Technology, 2017, 36: 245-248. doi:  10.1016/j.yofte.2017.04.005
[45] Fortin V, Bernier M, Carrier J, et al. Fluoride glass Raman fiber laser at 2185 nm [J]. Optics Letters, 2011, 36(21): 4152-4154. doi:  10.1364/ol.36.004152
[46] Duval S, Gauthier J C, Robichaud L R, et al. Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 µm [J]. Optics Letters, 2016, 41(22): 5294-5297. doi:  10.1364/OL.41.005294
[47] Nagl N, Mak K F, Wang Q, et al. Efficient femtosecond mid-infrared generation based on a Cr: ZnS oscillator and step-index fluoride fibers [J]. Optics Letters, 2019, 44(10): 2390-2393. doi:  10.1364/OL.44.002390
[48] Tiliouine I, Delauaye H, Granger G, et al. Fiber-based source of 500 kW mid-infrared solitons [J]. Optics Letters, 2021, 46(23): 5890-5893. doi:  10.1364/OL.445235
[49] Zhu X S, Peyghanbarian N. High-power ZBLAN glass fiber laser: review and prospect [J]. Advances in OptoElectronics, 2010: 1-23. doi:  10.1155/2010/501956
[50] Yang L Y, Li Y, Zhang B, et al. 30-W supercontinuum generation based on ZBLAN fiber in an all-fiber configuration [J]. Photonics Research, 2019, 7(9): 1061-1065. doi:  10.1364/PRJ.7.001061
[51] Slusher R E, Shaw L B, Hodelin J. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers [J]. Journal of the Optical Society of America B, 2004, 21(6): 1146-1155. doi:  10.1364/josab.21.001146
[52] Coractive. IR fibers [EB/OL]. [2023-02-11]. https://www.coractive.com.
[53] IRflex. Products [EB/OL]. [2023-02-11]. https://irflex.com/products/.
[54] Art photonics. Chalcogenide IR fibers [EB/OL]. [2023-02-11]. https://artphotonics.com/product/chalcogenide-mid-ir-fibers/.
[55] Guo H T, Xu Y T, Chen H Y, et al. Near- and Mid-infrared emissions of Dy3+ doped and Dy3+/Tm3+ co-doped lead cesium iodide modified chalcohalide glass [J]. Journal of Luminescence, 2014, 148: 10-17. doi:  10.1016./j.jlumin.2013.11011
[56] Guo Haitao, Cui Jian, Xu Yantan, et al. Progress in preparation and appllications of low-loss chalcogenide infrared fibers [J]. Laser and Optoelectronics Progress, 2019, 56(17): 170606. (in Chinese) doi:  10.3788/LOP56.170606
[57] Dai Shixun, Wang Min, Wang Yingying, et al. Review of mid-infrared supercontinuum spectrum generation based on chalcogenide glass fibers [J]. Laser and Optoelectronics Progress, 2020, 57(7): 071603. (in Chinese) doi:  10.3788/LOP57.071603
[58] Feng Xian, Yang Zhiyong, Shi Jindan. Progress in chalcogenide glass photonic crystal fibers with ultra-large mode area (invited) [J]. Chinese Journal of Lasers, 2022, 49(1): 0101006. (in Chinese) doi:  10.3788/CJL.202249.0101006
[59] Xu Yantao, Guo Haitao, Yan Xingtao, et al. Preparation and applications of low-loss As-S chalcogenide glass fibers [J]. Journal of Inorganic Materials, 2015, 30(1): 97-101. (in Chinese) doi:  10.15541/jim20140252
[60] Xu Yantao, Guo Haitao, Lu Min, et al. Preparation and properties of low-loss core-cladding structural Ge-Sb-Se chalcogenide glass fibers [J]. Infrared and Laser Engineering, 2015, 44(1): 182-187. (in Chinese) doi:  10.3969/j.issn.1007-2276.2015.01.031
[61] Aggarwal I D, Sanghera J S. Development and applications of chalcogenide glass optical fibers at NIL [J]. Journal of Optolectronics and Advanced Materials, 2002, 4(3): 665-678.
[62] Duhant M, Renard W, Canat G, et al. Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm [J]. Optics Letters, 2011, 36(15): 2859-2861. doi:  10.1364/OL.36.002859
[63] Cheng T L, Li S G, Yan X, et al. Mid-infrared cascaded stimulated Raman scattering up to eight orders in As-S optical fiber [J]. Optics Express, 2018, 26(9): 12007-12015. doi:  10.1364/OE.26.012007
[64] Wang F, Zhou X, Zhang X N, et al. Mid-infrare cascaded stimulated Raman scattering and flat supercontinuum generation in an As-S optical fiber pump at 2 µm [J]. Applied Optics, 2021, 60(22): 6351-6356. doi:  10.1364/AO.432394
[65] Jackson S D, Sánchez G A. Chalcogenide glass Raman fiber laser [J]. Applied Physics Letters, 2006, 88(22): 221106. doi:  10.1063/1.2208369
[66] Bernier M, El-amraoui M, Couillard J F, et al. Writing of Bragg gratings through the polymer jacket of low-loss As2S3 fibers using femtosecond pulses at 800 nm [J]. Optics Letters, 2012, 37(18): 3900-3902. doi:  10.1364/OL.37.003900
[67] Bernier M, Fortin V, Caron N, et al. Mid-infrared chalcogenide glass Raman fiber laser [J]. Optics Letters, 2013, 38(2): 127-129. doi:  10.1364/ol.38.000127
[68] Peng X F, Zhang P Q, Wang X S, et al. Modeling and simulation of a mid-IR 4.3 µm Raman laser in chalcogenide glass fibers [J]. OSA Continuum, 2019, 2(8): 2281-2292. doi:  10.1364/OSAC.2.002281
[69] Cheng T L, Usaki R, Duan Z C, et al. Soliton self-frequency shift and third-harmonic generation in a four-hole As2S5 microstructured optical fiber [J]. Optics Express, 2014, 22(4): 3740-3746. doi:  10.1364/OE.22.003740
[70] Cheng T L, Kanou Y, Asano K, et al. Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber [J]. Applied Physics Letters, 2014, 104(12): 121911. doi:  10.1063/1.4869756
[71] Wan Rui, Yang Liqing, Huo Weirong, et al. Research progress of mid-infrared tellurite glass and optical fibers (Invited) [J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2589-2603. (in Chinese) doi:  10.16552/j.cnki.issn1001-1625.2022.08.007
[72] Liu Wei, Zhou Xue, Zhang Fan, et al. Progress on tellurite glass and its optical fiber in sensing application [J]. Bulletin of the Chinese Ceramic Society, 2022, 50(8): 2326-2337. (in Chinese) doi:  10.14062/j.issn0454-5648.20210940
[73] Feng X, Shi J, Segura M, et al. Halo-tellurite glass fiber with low OH content for 2-5 µm mid-infrared nonlinear applications [J]. Optics Express, 2013, 21(16): 18949-18954. doi:  10.1364/OE.21.018949
[74] Yao C F, Jia Z X, Li Z R, et al. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber [J]. Optica, 2018, 5(10): 1264-1270. doi:  10.1364/OPTICA.5.001264
[75] Wang J J, Jia Z Z, Zhang C Z, et al. Thulium-doped fluorotellurite glass fibers for broadband S-band amplifiers [J]. Optics Letters, 2022, 47(8): 1964-1967. doi:  10.1364/OL.45107
[76] Kedenburg S, Strutynski C, Kibler B, et al. High repetition rate mid-infrared supercontunuum generation from 1.3 to 5.3 µm in robust step-index tellurite fibers [J]. Journal of the Optical Society of America B, 2017, 34(3): 601-607. doi:  10.1364/JOSAB.34.000601
[77] Hrabovsky J, Desevedavy F, Strizik L, et al. Glass formation and properties of the TeO2-ZnO-BaO tellurite optical galsses [J]. Journal of Non-Crystalline Solids, 2022, 582: 121445. doi:  10.1016/j.jnoncrysol.2022.121445
[78] Sekiya T, Mochida N, Ohtsuka A, et al. Raman spectra of BO3/2-TeO2 glasses [J]. Journal of Non-Crystalline Solids, 1992, 151: 222-228. doi:  10.1016/0022-3093(92)90033-G
[79] Qin G S, Jose R, Ohishi Y. Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation [J]. Journal of Applied Physics, 2007, 101(9): 093109. doi:  10.1063/1.2730566
[80] Liao M S, Yan X, Gao W Q, et al. Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion [J]. Optics Express, 2011, 19(16): 15389-15396. doi:  10.1364/oe.19.015389
[81] Cheng T L, Chen X Y, Yan X, et al. Mid-Infrared stimulated raman scattering and four-wave mixing in a tellurite microstructed optical fiber [J]. IEEE Photonics Technology Letters, 2022, 34(4): 239-242. doi:  10.1109/lpt.2022.3147768
[82] Qin G S, Liao M S, Suzuki T, et al. Widely tunable ring-cavity tellurite fiber Raman laser [J]. Optics Letters, 2008, 33(17): 2014-2016. doi:  10.1364/ol.33.002014
[83] Liu L, Tian Q J, Liao M S, et al. All-optical control of group velocity dispersion in tellurite photonic crystal fibers [J]. Optics Letters, 2012, 37(24): 5124-5126. doi:  10.1364/ol.37.005124
[84] Bi W J, Li X, Xing Z J, et al. Wavelength conversion through soliton self-frequency shift in tellurite microstructured fiber with picosecond pump pulse [J]. Journal of Applied Physics, 2016, 119(4): 043102. doi:  10.1063/1.4940413
[85] Zhang L, Cheng T L, Deng D H, et al. Tunable soliton generation in a birefringent tellurite microstructured optical fiber [J]. IEEE Photonics Technology Letters, 2015, 27(14): 1547-1549. doi:  10.1109/lpt.2015.2429735
[86] Koptev M Y, Anashkina E A, Andrianov A V, et al. Widely tunable mid-infrared fiber laser source based on soliton self-frequency shift in microstructured tellurite fiber [J]. Optics Letters, 2015, 40(17): 4094-4097. doi:  10.1364/ol.40.004094
[87] Yao Y, Yang F, Dai S X, et al. Mid-infrared femtosecond laser-induced damage in TeO2-BaF2-Y2O3 fluorotellurite glass [J]. Optical Materials Express, 2022, 12(4): 1670-1682. doi:  10.1364/OME.453432
[88] Guo X H, Jia Z X, Jiao Y D, et al. 25.8 W all-fiber mid-infrared supercontinuum light sources based on fluorotellurite fibers [J]. IEEE Photonics Technology Letters, 2022, 34(7): 367-370. doi:  10.1109/LPT.2022.3158813
[89] Jiao Y D, Jia Z X, Guo X H, et al. Third-order cascaded Raman shift in all-solid fluorotellurite fiber pumped at 1550 nm [J]. Optics Letters, 2022, 47(3): 690-693. doi:  10.1364/OL.446730
[90] Jiao Y D, Meng F C, Jia Z X, et al. Cascaded Raman amplifiers based on fluorotellurite fibers [J]. Optical Materials Express, 2022, 12(6): 2309-2317. doi:  10.1364/OME.458540
[91] Li Z R, Li N, Yao C F, et al. Tunable mid-infrared Raman soliton generation from 1.96 to 2.82 µm in an all-solid fluorotellurite fiber [J]. AIP Advances, 2018, 8(11): 115001. doi:  10.1063/1.5042137
[92] Guo X H, Meng F C, Jia Z X, et al. Dispersive wave generation at 4 µm in a dispersion-engineered fluorotellurite fiber pumped by a 1.98 µm femtosecond fiber laser [J]. Optical Materials Express, 2022, 12(2): 634-642. doi:  10.1364/OME.448453
[93] Li Z R, Yao C F, Jia Z X, et al. Broadband supercontinuum generation from 600 to 5 400 nm in a tapered fluorotellurite fiber pumped by a 2 010 nm femtosecond fiber laser [J]. Applied Physics Letters, 2019, 115(9): 091103. doi:  10.1063/1.5110313