[1] Buikema A, Jose F, Augst S J, et al. Narrow-linewidth fiber amplifier for gravitational-wave detectors [J]. Optics Letters, 2019, 44(15): 3833-3836. doi:  10.1364/OL.44.003833
[2] Rapol U D, Krishna A, Wasan A, et al. Laser cooling and trapping of Yb from a thermal source [J]. European Physical Journal D, 2004, 29(3): 409-414. doi:  10.1140/epjd/e2004-00041-3
[3] Li S H, Wang Q, Song R, et al. Laser diode pumped high-energy single-frequency Er: YAG laser with hundreds of nanoseconds pulse duration [J]. Chinese Optics Letters, 2020, 18(3): 40-44.
[4] Williams J G, Turyshev S G, Boggs D H. Progress in lunar laser ranging tests of relativistic gravity [J]. Physical Review Letters, 2004, 93(26): 261101. doi:  10.1103/PhysRevLett.93.261101
[5] Shi Wei, Fu Shijie, Fang Qiang, et al. Single-frequency fiber laser based on rare-earth-doped silica fiber [J]. Infrared and Laser Engineering, 2016, 45(10): 1003001. (in Chinese) doi:  10.3788/IRLA201645.1003001
[6] Hou Y, Zhang Q, Qi S, et al. 1.5 μm polarization-maintaining dual-wavelength single-frequency distributed Bragg reflection fiber laser with 28 GHz stable frequency difference [J]. Optics Letters, 2018, 43(6): 1383-1386. doi:  10.1364/OL.43.001383
[7] Loh W H, Samson B N, Dong L, et al. High performance single frequency fiber grating-based erbium/ytterbium-codoped fiber lasers [J]. Journal of Lightwave Technology, 1998, 16(1): 114-118. doi:  10.1109/50.654992
[8] Mo S, Huang X, Xu S, et al. 600-Hz linewidth short-linear-cavity fiber laser [J]. Optics Letters, 2014, 39(20): 5818-5821. doi:  10.1364/OL.39.005818
[9] Yuan L M, Lu B L, Kang J, et al. Narrow-linewidth single-frequency yitterbium-doped fiber laser at 1 083 nm [J]. Acta Photonica Sinica, 2016, 45(8): 0814003. (in Chinese) doi:  10.3788/gzxb20164508.0814003
[10] Wang L, Cao Y, Wan M, et al. Tunable single-frequency fiber laser based on the spectral narrowing effect in a nonlinear semiconductor optical amplifier [J]. Optics Express, 2016, 24(26): 29705-29713. doi:  10.1364/OE.24.029705
[11] Paschotta R, Nilsson J, Reekie L, et al. Single-frequency ytterbium-doped fiber laser stabilized by spatial hole burning [J]. Optics Letters, 1997, 22(1): 40-42. doi:  10.1364/OL.22.000040
[12] Yin F, Yang S, Chen H, et al. 60-nm-wide tunable single-longitudinal-mode ytterbium fiber laser with passive multiple-ring cavity [J]. IEEE Photonics Technology Letters, 2011, 23(22): 1658-1660. doi:  10.1109/LPT.2011.2166112
[13] Li Y, He Y, Cai Y, et al. Black phosphorus: broadband nonlinear optical absorption and application [J]. Laser Physics Letters, 2018, 15(2): 025301. doi:  10.1088/1612-202X/aa94e3
[14] Zhang J, Sheng Q, Zhang L, et al. 2.56 W single-frequency all-fiber oscillator at 1720 nm [J]. Advanced Photonic Research, 2022, 3(2): 02100256. doi:  10.1002/adpr.202100256
[15] Ahmad H, Muhammad F D, Chang H P, et al. Dual-wavelength fiber lasers for the optical generation of microwave and terahertz radiation [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 166-173. doi:  10.1109/JSTQE.2014.2302351
[16] Kim R K, Chu S, Han Y G. Stable and widely tunable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for optical beat frequency generation [J]. IEEE Photonics Technology Letters, 2012, 24(6): 521-523. doi:  10.1109/LPT.2012.2182763
[17] Yin B, Feng S, Liu Z, et al. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter [J]. Optics Express, 2014, 22(19): 22528-22533. doi:  10.1364/OE.22.022528
[18] Zhu T, Zhang B, Shi L, et al. Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering [J]. Optics Express, 2016, 24(2): 1324-1330. doi:  10.1364/OE.24.001324
[19] Feng T, Wang M, Wang X, et al. Switchable 0.612 nm-spaced dual-wavelength fiber laser with sub-khz linewidth, ultra-high osnr, ultra-low rin and orthogonal polarization outputs [J]. Journal of Lightwave Technology, 2019, 37(13): 3173-3182. doi:  10.1109/JLT.2019.2912432
[20] Lemieux J F, Bellemare A. Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating [J]. Electronics Letters, 1999, 35(11): 904-906. doi:  10.1049/el:19990583
[21] Kang Z, Jin U K. C-band wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser [J]. Optics Express, 2008, 16(18): 14173-14179. doi:  10.1364/OE.16.014173