[1] Wang Qinghua, Kalantar-Zadeh Kourosh, Kis Andras, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnology, 2012, 7(11): 699-712. doi:  10.1038/nnano.2012.193
[2] Kin Fai Mak, Jie Shan. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides [J]. Nature Photonics, 2016, 10(4): 216-226. doi:  10.1038/nphoton.2015.282
[3] 陈红富, 罗曼, 沈倪明, 等. 二维层状材料异质结光电探测器研究进展[J]. 红外与激光工程, 2021, 50(1): 20211018. doi:  10.3788/IRLA20211018

Chen Hongfu, Luo Man, Shen Niming, et al. Research progress of two-dimensional layered materials-based heterojunction photodetectors [J]. Infrared and Laser Engineering, 2021, 50(1): 20211018. (in Chinese) doi:  10.3788/IRLA20211018
[4] 许航瑀, 王鹏, 陈效双, 等. 二维半导体红外光电探测器研究进展[J]. 红外与激光工程, 2021, 50(1): 20211017. doi:  10.3788/IRLA20211017

Xu Hangyu, Wang Peng, Chen Xiaoshuang, et al. Research progress of two-dimensional semiconductor infrared photodetector [J]. Infrared and Laser Engineering, 2021, 50(1): 20211017. (in Chinese) doi:  10.3788/IRLA20211017
[5] Lee E J H, Balasubramanian K, Weitz R T, et al. Contact and edge effects in graphene devices [J]. Nature Nanotechnology, 2008, 3(8): 486-490. doi:  10.1038/nnano.2008.172
[6] Yin Zongyou, Li Hai, Li Hong, et al. Single-layer MoS2 phototransistors [J]. ACS Nano, 2012, 6: 74-80.
[7] Perea-López N, Elías A L, Berkdemir A, et al. Photosensor device based on few-layered WS2 films [J]. Advanced Functional Materials, 2013, 23(44): 5510. doi:  10.1002/adfm.201370228
[8] Zou Yixuan, Zhang Zekun, Yan Jiawen, et al. High-temperature flexible WSe2 photodetectors with ultrahigh photoresponsivity [J]. Nature Communications, 2022, 13: 4372. doi:  10.1038/s41467-022-32062-0
[9] Hu Pingan, Wang Lifeng, Yoon Mina, et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates [J]. Nano Letters, 2013, 13(4): 1649-1654. doi:  10.1021/nl400107k
[10] Roy K, Padmanabhan M, Goswami S, et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices [J]. Nature Nanotechnology, 2013, 8(11): 826-830. doi:  10.1038/nnano.2013.206
[11] Lee Chul-Ho, Lee Gwan-Hyoung, Zande A M, et al. Atomically thin p-n junctions with van der Waals heterointerfaces [J]. Nature Nanotechnology, 2014, 9(9): 676-681. doi:  10.1038/nnano.2014.150
[12] Tao Jiajia, Jiang Jinbao, Zhao Shinuan, et al. Fabrication of 1D Te/2D ReS2 mixed-dimensional van der Waals p-n heterojunction for high-performance phototransistor [J]. ACS Nano, 2021, 15(2): 3241-3250.
[13] Yu Woo Jong, Liu Yuan, Zhou Hailong, et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials [J]. Nature Nanotechnology, 2013, 8(12): 952-958. doi:  10.1038/nnano.2013.219
[14] Fang Hehai, Hu Weida. Photogating in low dimensional photodetectors [J]. Advanced Science, 2017, 4: 1700323. doi:  10.1002/advs.201700323
[15] Furchi Marco M, Pospischil Andreas, Libisch Florian, et al. Photovoltaic effect in an electrically tunable van der Waals heterojunction [J]. Nano Letters, 2014, 14(8): 4785. doi:  10.1021/nl501962c
[16] Buscema Michele, Barkelid Maria, Zwiller Val, et al. Large and tunable photo-thermoelectric effect in single-layer MoS2 [J]. Nano Letters, 2013, 13(2): 358-363. doi:  10.1021/nl303321g
[17] Vu Quoc An, Lee Jin Hee, Nguyen Van Luan, et al. Tuning carrier tunneling in van der Waals heterostructures for ultrahigh detectivity [J]. Nano Letters, 2017, 17(1): 453-459. doi:  10.1021/acs.nanolett.6b04449
[18] Gao Feng, Chen Hongyu, Feng Wei, et al. High-performance van der Waals metal-insulator-semiconductor photodetector optimized with valence band matching [J]. Advanced Functional Materials, 2021, 31(35): 2104359. doi:  10.1002/adfm.202104359
[19] Guo Shuai, Chen Zhuo, Weller Dieter, et al. Toward high-performance self-driven photodetectors via multistacking van der Waals heterostructures [J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56438-56445.
[20] Ghimire Mohan Kumar, Ji Hyunjin, Gul Hamza Zad, et al. Defect-affected photocurrent in MoTe2 FETs [J]. ACS Applied Materials & Interfaces, 2019, 11(10): 10068-10073.
[21] Li Xiaobo, Wu Juanxia, Mao Nannan, et al. A self-powered graphene–MoS2 hybrid phototransistor with fast response rate and high on-off ratio [J]. Carbon, 2015, 92: 126-132. doi:  10.1016/j.carbon.2015.03.064
[22] Xu Hua, Wu Juanxia, Feng Qingliang, et al. High responsivity and gate tunable graphene-MoS2 hybrid phototransistor [J]. Small, 2014, 10(11): 2300-2306. doi:  10.1002/smll.201303670
[23] Gao Shan, Wang Ziqian, Wang Huide, et al. Graphene/MoS2/graphene vertical heterostructure -based broadband photodetector with high performance [J]. Advanced Materials Interfaces, 2021, 8(3): 2001730. doi:  10.1002/admi.202001730