[1] Lichtman J W, Conchello J A. Fluorescence microscopy [J]. Nature Methods, 2005, 2(12): 910-919. doi:  10.1038/nmeth817
[2] Gardner J P, Mather J C, Clampin M, et al. The james webb space telescope [J]. Space Science Reviews, 2006, 123(4): 485-606. doi:  10.1007/s11214-006-8315-7
[3] Kobayashi M, Kikuchi D, Okamura H. Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm [J]. PLoS One, 2009, 4(7): e6256. doi:  10.1371/journal.pone.0006256
[4] Cao W, Che R, Ye D. An illumination-independent edge detection and fuzzy enhancement algorithm based on wavelet transform for non-uniform weak illumination images [J]. Pattern Recognition Letters, 2008, 29(3): 192-199. doi:  10.1016/j.patrec.2007.09.012
[5] Yeom S, Javidi B, Watson E. Photon counting passive 3 D image sensing for automatic target recognition [J]. Optics Express, 2005, 13(23): 9310-9330. doi:  10.1364/OPEX.13.009310
[6] Johnson S D, Moreau P A, Gregory T, et al. How many photons does it take to form an image? [J]. Applied Physics Letters, 2020, 116(26): 260504. doi:  10.1063/5.0009493
[7] You L, Yang X, He Y, et al. Jitter analysis of a superconducting nanowire single photon detector [J]. Aip Advances, 2013, 3(7): 072135. doi:  10.1063/1.4817581
[8] You L. Superconducting nanowire single-photon detectors for quantum information [J]. Nanophotonics, 2020, 9(9): 2673-2692. doi:  10.1515/nanoph-2020-0186
[9] Zhou Hui, Zhang Chengjun, Lü Chaolin, et al. Recent progress of imaging applications based on superconducting nanowire single-photon detectors [J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011005. (in Chinese)
[10] Kong Lingdong, Zhao Qingyuan, Tu Xuecou, et al. Progress and applications of superconducting nanowire delay-line single-photon imagers [J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011002. (in Chinese)
[11] Sciamanda R J. Dirac and photon interference [J]. American Journal of Physics, 1969, 37(11): 1128-1130. doi:  10.1119/1.1975229
[12] Kirmani A, Venkatraman D, Shin D, et al. First-photon imaging [J]. Science, 2014, 343(6166): 58-61.
[13] Li Zhengping, Ye Juntian, Xin Huang, et al. Single-photon imaging over 200 km [J]. Optica, 2021, 8(3): 344-349. doi:  10.1364/OPTICA.408657
[14] Morris P A, Aspden R S, Bell J E C, et al. Imaging with a small number of photons [J]. Nature Communications, 2015, 6: 5913. doi:  10.1038/ncomms6913
[15] Aspden R S, Tasca D S, Boyd R W, et al. EPR-based ghost imaging using a single-photon-sensitive camera [J]. New Journal of Physics, 2013, 15(7): 073032. doi:  10.1088/1367-2630/15/7/073032
[16] Zhu Y, Shi J H, Wu X Y, et al. Photon-limited non-imaging object detection and classification based on single-pixel imaging system [J]. Appl Phys B, 2020, 126: 21.
[17] Ma S, Hu C Y, Wang C L, et al. Multi-scale ghost imaging LiDAR via sparsity constraints using push-broom scanning [J]. Opt Communication, 2019, 448: 89-92.
[18] Chen M L, Li E R, Han S S. Application of multi-correlation-scale measurement matrices in ghost imaging via sparsity constraints [J]. App Opt, 2014, 53: 13.
[19] Aβmann M, Bayer M. Compressive adaptive computational ghost imaging [J]. Scientific Reports, 2013, 3: 1545. doi:  10.1038/srep01545
[20] Yu W K, Li M F, Yao X R, et al. Adaptive compressive ghost imaging based on wavelet trees and sparse representation [J]. Optics Express, 2014, 22(6): 7133-7144. doi:  10.1364/OE.22.007133
[21] Gu J H, Sun S, Xu Y K, et al. Feedback ghost imaging by gradually distinguishing and concentrating onto the edge area [J]. Chin Opt Lett, 2021, 19(2): 0411.
[22] Sun S, Liu W T, Lin H Z, et al. Multi-scale adaptive computational ghost imaging [J]. Scientific Reports, 2016, 6: 37013. doi:  10.1038/srep37013
[23] Sun S, Lin H Z, Xu Y K, et al. Tracking and imaging of moving objects with temporal intensity difference correlation [J]. Optics Express, 2019, 27(20): 27851-27861. doi:  10.1364/OE.27.027851
[24] Xu Y K, Liu W T, Zhang E F, et al. Is ghost imaging intrinsically more powerful against scattering? [J]. Opti Express, 2015, 23(26): 32993-33000. doi:  10.1364/OE.23.032993
[25] Wu Yongbo, Yang Zhihui, Tang Zhilie. Experimental study on anti-disturbance ability of underwater ghost imaging [J]. Laser & Optoelectronics Progress, 2021, 58(6): 0611002. (in Chinese)
[26] Liu Weitao, Sun Shuai, Hu Hongkang, et al. Progress and prospect for ghost imaging of moving objects [J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011001. (in Chinese)
[27] Gong Wenlin, Sun Jianfeng, Deng Chenjin, et al. Research progress on single-pixel imaging lidar via coherent detection [J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011003. (in Chinese)
[28] Fu Xiquan, Huang Xianwei, Tan Wei, et al. Correlation imaging research under disturbance of channel airflow [J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011017. (in Chinese)
[29] Goodman, Joseph W. Statistical Optics[M]. New York: John Wiley & Sons, 2015.
[30] Gatti A, Bache M, Magatti D, et al. Coherent imaging with pseudo-thermal incoherent light [J]. Journal of Modern Optics, 2006, 53(5-6): 739-760.
[31] Shapiro J H. Computational ghost imaging [J]. Physical Review A, 2008, 78(6): 061802. doi:  10.1103/PhysRevA.78.061802
[32] Hardy N D, Shapiro J H. Computational ghost imaging versus imaging laser radar for three-dimensional imaging [J]. Physical Review A, 2013, 87(2): 023820. doi:  10.1103/PhysRevA.87.023820
[33] Liu X F, Chen X H, Yao X R, et al. Lensless ghost imaging with sunlight [J]. Opt Lett, 2014, 39(8): 2314-2317. doi:  10.1364/OL.39.002314
[34] Gong W, Zhao C, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint [J]. Scientific Reports, 2016, 6: 26133. doi:  10.1038/srep26133
[35] Gong W, Han S. Correlated imaging in scattering media [J]. Optics Letters, 2011, 36(3): 394-396. doi:  10.1364/OL.36.000394
[36] Shih Y. Classical, Semi-classical and Quantum Noise[M].Berlin: Springs, 2012: 169-222.
[37] Shih Y. The physics of ghost imaging: nonlocal interference or local intensity fluctuation correlation? [J]. Quantum Information Processing, 2012, 11(4): 995-1001. doi:  10.1007/s11128-012-0396-5
[38] Shih Y. The physics of turbulence-free ghost imaging [J]. Technologies, 2016, 4(4): 39. doi:  10.3390/technologies4040039
[39] Klyshko D N. Photon and Nonlinear Optics [M]. New York: Gordon and Breach Science Press, 1988.
[40] Bornman N, Agnew M, Zhu F, et al. Ghost imaging using entanglement-swapped photons [J]. Quantum Information, 2019, 5(1): 1-6. doi:  10.1038/s41534-018-0113-z
[41] Zerom P, Chan K W C, Howell J C, et al. Entangled-photon compressive ghost imaging [J]. Physical Review A, 2011, 84(6): 061804. doi:  10.1103/PhysRevA.84.061804
[42] Li J, Gao W, Qian J, et al. Robust entangled-photon ghost imaging with compressive sensing [J]. Sensors, 2019, 19(1): 192. doi:  10.3390/s19010192
[43] Dixon P B, Howland G A, Chan K W C, et al. Quantum ghost imaging through turbulence [J]. Physical Review A, 2011, 83(5): 051803. doi:  10.1103/PhysRevA.83.051803
[44] Schori A, Shwartz S. X-ray ghost imaging with a laboratory source [J]. Optics Express, 2017, 25(13): 14822-14828. doi:  10.1364/OE.25.014822
[45] Zhang A X, He Y H, Wu L A, et al. Tabletop x-ray ghost imaging with ultra-low radiation [J]. Optica, 2018, 5(4): 374-377. doi:  10.1364/OPTICA.5.000374
[46] Deng Chenjin, Gong Wenlin, Han Shensheng. Pulse-compression ghost imaging lidar via coherent detection. [J]. Optics Express, 2016, 24(23): 25983-25994. doi:  10.1364/OE.24.025983
[47] Deng Chenjin, Pan Long, Wang Chenglong, et al. Performance analysis of ghost imaging lidar in background light environment [J]. Photonics Research, 2017(5): 431-435.
[48] Pan Long, Deng Chenjin, Bo Zunwang, et al. Experimental investigation of chirped amplitude modulation heterodyne ghost imaging. [J]. Optics Express, 2020, 28(14): 20808-20816. doi:  10.1364/OE.399006
[49] Li Dong, Yang Ding, Sun Shuai, et al. Enhancing robustness of ghost imaging against environment noise via cross-correlation in time domain. [J]. Optics Express, 2021, 29(20): 31068-31077. doi:  10.1364/OE.439519
[50] Yang Ying, Shi Jianhong, Cao Fei, et al. Computational imaging based on time-correlated single-photon-counting technique at low light level [J]. Applied Optics, 2015, 54(31): 009277.
[51] Liu Y, Shi J, Zeng G. Single-photon-counting polarization ghost imaging [J]. Applied Optics, 2016, 55(36): 10347. doi:  10.1364/AO.55.010347
[52] Liu X, Shi J, Wu X, et al. Fast first-photon ghost imaging [J]. Scientific Reports, 2018, 8(1): 5012. doi:  10.1038/s41598-018-23363-w
[53] Liu X, Shi J, Sun L, et al. Photon-limited single-pixel imaging [J]. Optics Express, 2020, 28(6): 8132. doi:  10.1364/OE.381785
[54] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement [J]. Physical Review A, 1995, 52: R3429. doi:  10.1103/PhysRevA.52.R3429
[55] Aspden R S, Morris P A, He R, et al. Heralded phase-contrast imaging using an orbital angular momentum phase-filter [J]. Journal of Optics, 2016, 18(5): 055204. doi:  10.1088/2040-8978/18/5/055204
[56] Tasca D S, Aspden R S, Morris P A, et al. The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD camera [J]. Optics Express, 2013, 21(25): 30460-30473. doi:  10.1364/OE.21.030460
[57] Liu Shikai, Zhou Zhiyuan, Shi Baosen. Progress on optical image edge detection [J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011014. (in Chinese)
[58] Brida G, Genovese M, Berchera I R. Experimental realization of sub-shot-noise quantum imaging [J]. Nature Photonics, 2010, 4(4): 227. doi:  10.1038/nphoton.2010.29
[59] Genovese M. Real applications of quantum imaging [J]. Journal of Optics, 2016, 18(7): 073002. doi:  10.1088/2040-8978/18/7/073002
[60] Samantaray N, Ruo-Berchera I, Meda A, et al. Realization of the first sub-shot-noise wide field microscope [J]. Light: Science & Applications, 2017, 6(7): e17005.
[61] Valencia Alejandra, Scarcelli Giuliano, D'Angelo Milena, et al. Two-photon imaging with thermal light. [J]. Physical Review Letters, 2005, 94(6): 063601. doi:  10.1103/PhysRevLett.94.063601
[62] Yang Dongyue, Wu Guohua, Li Junhui, et al. Image recovery of ghost imaging with sparse spatial frequencies [J]. Optics Letters, 2020, 45(19): 403288.
[63] Sun Shuai, Liu Weitao, Gu Junhao, et al. Ghost imaging normalized by second-order coherence. [J]. Optics Letters, 2019, 44(24): 5993-5996. doi:  10.1364/OL.44.005993
[64] Wang Fei, Wang Hao, Wang Haichao, et al. Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging. [J]. Optics Express, 2019, 27(18): 25560-25572. doi:  10.1364/OE.27.025560
[65] Hu Hongkang, Sun Shuai, Lin Huizu, et al. Denoising ghost imaging under a small sampling rate via deep learning for tracking and imaging moving objects. [J]. Optics Express, 2020, 28(25): 37284-37293. doi:  10.1364/OE.412597
[66] He Y C, Wang G, Dong G X. et al. Ghost imaging based on deep learning [J]. Sci Rep, 2018, 8: 6469.
[67] Wang F, Wang H, Wang H C, et al. Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging [J]. Opt Express, 2019, 27: 25560-25572.
[68] Rizvi S, Cao J, Zhang K Y, et al. DeepGhost: real-time computational ghost imaging via deep learning [J]. Sci Rep, 2020, 10: 1140.
[69] Yang Y, Shi J, Cao F, et al. Computational imaging based on time-correlated single-photon-counting technique at low light level [J]. Applied Optics, 2015, 54(31): 9277-9283.
[70] Liu H C, Yang H, Xiong J, et al. Positive and negative ghost imaging [J]. Physical Review Applied, 2019, 12(3): 034019. doi:  10.1103/PhysRevApplied.12.034019
[71] Li G L, Zhao Y, Yang Z H, et al. Positive–negative corresponding normalized ghost imaging based on an adaptive threshold [J]. Laser Physics Letters, 2016, 13(11): 115202. doi:  10.1088/1612-2011/13/11/115202
[72] Yang H, Wu S, Wang H B, et al. Probability theory in conditional-averaging ghost imaging with thermal light [J]. Physical Review A, 2018, 98(5): 053853. doi:  10.1103/PhysRevA.98.053853
[73] Cao D Z, Zhang S H, Zhao Y, et al. Zero-photon imaging under extremely low-light illumination [J]. arXiv preprint, 2021, 2108: 01037.