[1] Brun M, Guenneau S, Movchan A B. Achieving control of in-plane elastic waves [J]. Applied Physics Letters, 2009, 94(6): 061903.
[2] Guenneau S, Movchan A, Pétursson G, et al. Acoustic metamaterials for sound focusing and confinement [J]. New Journal of Physics, 2007, 9(11): 399. doi:  10.1088/1367-2630/9/11/399
[3] Alici K B, Özbay E. Radiation properties of a split ring resonator and monopole composite [J]. Physica Status Solidi (b), 2007, 244(4): 1192-1196. doi:  10.1002/pssb.200674505
[4] Zeng S, Sreekanth K V, Shang J, et al. Graphene-gold metasurface architectures for ultrasensitive plasmonic biosensing [J]. Adv Mater, 2015, 27(40): 6163-6169. doi:  10.1002/adma.201501754
[5] Yu N, Capasso F. Flat optics with designer metasurfaces [J]. Nat Mater, 2014, 13(2): 139-150. doi:  10.1038/nmat3839
[6] Li G, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces [J]. Nature Reviews Materials, 2017, 2(5): 17010. doi:  10.1038/natrevmats.2017.10
[7] Lin D, Fan P, Hasman E, et al. Dielectric gradient metasurface optical elements [J]. Science, 2014, 345(6194): 298-302. doi:  10.1126/science.1253213
[8] Yin X, Ye Z, Rho J, et al. Photonic spin Hall effect at metasurfaces [J]. Science, 2013, 339(6126): 1405-1407. doi:  10.1126/science.1231758
[9] Ni X, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas [J]. Science, 2012, 335(6067): 427. doi:  10.1126/science.1214686
[10] Kujala S, Canfield B K, Kauranen M, et al. Multipole interference in the second-harmonic optical radiation from gold nanoparticles [J]. Phys Rev Lett, 2007, 98(16): 167403. doi:  10.1103/PhysRevLett.98.167403
[11] Celebrano M, Wu X, Baselli M, et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation [J]. Nat Nanotechnol, 2015, 10(5): 412-417. doi:  10.1038/nnano.2015.69
[12] O'Brien K, Suchowski H, Rho J, et al. Predicting nonlinear properties of metamaterials from the linear response [J]. Nat Mater, 2015, 14(4): 379-383. doi:  10.1038/nmat4214
[13] Bautista G, Dreser C, Zang X, et al. Collective effects in second-harmonic generation from plasmonic oligomers [J]. Nano Lett, 2018, 18(4): 2571-2580. doi:  10.1021/acs.nanolett.8b00308
[14] Chervinskii S, Koskinen K, Scherbak S, et al. Nonresonant local fields enhance second-harmonic generation from metal nanoislands with dielectric cover [J]. Phys Rev Lett, 2018, 120(11): 113902. doi:  10.1103/PhysRevLett.120.113902
[15] Bouhelier A, Beversluis M, Hartschuh A, et al. Near-field second-harmonic generation induced by local field enhancement [J]. Phys Rev Lett, 2003, 90(1): 013903. doi:  10.1103/PhysRevLett.90.013903
[16] Tsai W Y, Chung T L, Hsiao H H, et al. Second harmonic light manipulation with vertical split ring resonators [J]. Adv Mater, 2019, 31(7): e1806479.
[17] Dong Z, Asbahi M, Lin J, et al. Second-harmonic generation from sub-5 nm gaps by directed self-assembly of nano particles onto template-stripped gold substrates [J]. Nano Lett, 2015, 15(9): 5976-5981. doi:  10.1021/acs.nanolett.5b02109
[18] Metzger B, Gui L, Fuchs J, et al. Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength [J]. Nano Lett, 2015, 15(6): 3917-3922. doi:  10.1021/acs.nanolett.5b00747
[19] Czaplicki R, Makitalo J, Siikanen R, et al. Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry [J]. Nano Lett, 2015, 15(1): 530-534. doi:  10.1021/nl503901e
[20] Aouani H, Navarro-Cia M, Rahmani M, et al. Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light [J]. Nano Lett, 2012, 12(9): 4997-5002. doi:  10.1021/nl302665m
[21] Thyagarajan K, Rivier S, Lovera A, et al. Enhanced second-harmonic generation from double resonant plasmonic antennae [J]. Opt Express, 2012, 20(12): 12860-12865. doi:  10.1364/OE.20.012860
[22] Zhang Y, Grady N K, Ayala-Orozco C, et al. Three-dimensional nanostructures as highly efficient generators of second harmonic light [J]. Nano Lett, 2011, 11(12): 5519-5523. doi:  10.1021/nl2033602
[23] Butet J, Bachelier G, Russier-Antoine I, et al. Interference between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles [J]. Phys Rev Lett, 2010, 105(7): 077401. doi:  10.1103/PhysRevLett.105.077401
[24] Butet J, Duboisset J, Bachelier G, et al. Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium [J]. Nano Lett, 2010, 10(5): 1717-1721. doi:  10.1021/nl1000949
[25] Bozhevolnyi S I, Beermann J, Coello V. Direct observation of localized second-harmonic enhancement in random metal nanostructures [J]. Phys Rev Lett, 2003, 90(19): 197403. doi:  10.1103/PhysRevLett.90.197403
[26] Kim E M, Elovikov S S, Murzina T V, et al. Surface-enhanced optical third-harmonic generation in Ag island films [J]. Phys Rev Lett, 2005, 95(22): 227402. doi:  10.1103/PhysRevLett.95.227402
[27] Hanke T, Krauss G, Trautlein D, et al. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses [J]. Phys Rev Lett, 2009, 103(25): 257404. doi:  10.1103/PhysRevLett.103.257404
[28] Shi L, Andrade J R C, Tajalli A, et al. Generating ultrabroadband deep-uv radiation and sub-10 nm gap by hybrid-morphology gold antennas [J]. Nano Lett, 2019, 19(7): 4779-4786. doi:  10.1021/acs.nanolett.9b02100
[29] Chen P Y, Alu A. Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays [J]. Nano Lett, 2011, 11(12): 5514-5518. doi:  10.1021/nl203354b
[30] Suchowski H, O'Brien K, Wong Z J, et al. Phase mismatch-free nonlinear propagation in optical zero-index materials [J]. Science, 2013, 342(6163): 1223-1226. doi:  10.1126/science.1244303
[31] Simkhovich B, Bartal G. Plasmon-enhanced four-wave mixing for superresolution applications [J]. Phys Rev Lett, 2014, 112(5): 056802. doi:  10.1103/PhysRevLett.112.056802
[32] Renger J, Quidant R, van Hulst N, et al. Surface-enhanced nonlinear four-wave mixing [J]. Phys Rev Lett, 2010, 104(4): 046803. doi:  10.1103/PhysRevLett.104.046803
[33] Vampa G, Ghamsari B G, Siadat Mousavi S, et al. Plasmon-enhanced high-harmonic generation from silicon [J]. Nature Physics, 2017, 13(7): 659-662. doi:  10.1038/nphys4087
[34] Han S, Kim H, Kim Y W, et al. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure [J]. Nat Commun, 2016, 7: 13105. doi:  10.1038/ncomms13105
[35] Sivis M, Duwe M, Abel B, et al. Extreme-ultraviolet light generation in plasmonic nanostructures [J]. Nature Physics, 2013, 9(5): 304-309. doi:  10.1038/nphys2590
[36] Park I-Y, Kim S, Choi J, et al. Plasmonic generation of ultrashort extreme-ultraviolet light pulses [J]. Nature Photonics, 2011, 5(11): 677-681. doi:  10.1038/nphoton.2011.258
[37] Kim S, Jin J, Kim Y J, et al. High-harmonic generation by resonant plasmon field enhancement [J]. Nature, 2008, 453(7196): 757-760. doi:  10.1038/nature07012
[38] Thyagarajan K, Butet J, Martin O J. Augmenting second harmonic generation using Fano resonances in plasmonic systems [J]. Nano Lett, 2013, 13(4): 1847-1851. doi:  10.1021/nl400636z
[39] Lee J, Tymchenko M, Argyropoulos C, et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions [J]. Nature, 2014, 511(7507): 65-69. doi:  10.1038/nature13455
[40] Aouani H, Rahmani M, Navarro-Cia M, et al. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna [J]. Nat Nanotechnol, 2014, 9(4): 290-294. doi:  10.1038/nnano.2014.27
[41] Pu Y, Grange R, Hsieh C L, et al. Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation [J]. Phys Rev Lett, 2010, 104(20): 207402. doi:  10.1103/PhysRevLett.104.207402
[42] Zhong J H, Vogelsang J, Yi J M, et al. Nonlinear plasmon-exciton coupling enhances sum-frequency generation from a hybrid metal/semiconductor nanostructure [J]. Nat Commun, 2020, 11(1): 1464. doi:  10.1038/s41467-020-15232-w
[43] Shi J, Li Y, Kang M, et al. Efficient second harmonic generation in a hybrid plasmonic waveguide by mode interactions [J]. Nano Lett, 2019, 19(6): 3838-3845. doi:  10.1021/acs.nanolett.9b01004
[44] Ahmadivand A, Semmlinger M, Dong L, et al. Toroidal dipole-enhanced third harmonic generation of deep ultraviolet light using plasmonic meta-atoms [J]. Nano Lett, 2019, 19(1): 605-611. doi:  10.1021/acs.nanolett.8b04798
[45] Timpu F, Hendricks N R, Petrov M, et al. Enhanced second-harmonic generation from sequential capillarity-assisted particle assembly of hybrid nanodimers [J]. Nano Lett, 2017, 17(9): 5381-5388. doi:  10.1021/acs.nanolett.7b01940
[46] Gomez-Tornero A, Tserkezis C, Mateos L, et al. 2D arrays of hexagonal plasmonic necklaces for enhanced second harmonic generation [J]. Adv Mater, 2017, 29(15).
[47] Metzger B, Hentschel M, Schumacher T, et al. Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas [J]. Nano Lett, 2014, 14(5): 2867-2872. doi:  10.1021/nl500913t
[48] Ren M L, Liu W, Aspetti C O, et al. Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes [J]. Nat Commun, 2014, 5: 5432. doi:  10.1038/ncomms6432
[49] Grinblat G, Rahmani M, Cortes E, et al. High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer [J]. Nano Lett, 2014, 14(11): 6660-6665. doi:  10.1021/nl503332f
[50] Harutyunyan H, Volpe G, Quidant R, et al. Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas [J]. Phys Rev Lett, 2012, 108(21): 217403. doi:  10.1103/PhysRevLett.108.217403
[51] Czaplicki R, Husu H, Siikanen R, et al. Enhancement of second-harmonic generation from metal nanoparticles by passive elements [J]. Phys Rev Lett, 2013, 110(9): 093902. doi:  10.1103/PhysRevLett.110.093902
[52] Czaplicki R, Kiviniemi A, Huttunen M J, et al. Less is more: enhancement of second-harmonic generation from metasurfaces by reduced nanoparticle density [J]. Nano Lett, 2018, 18(12): 7709-7714. doi:  10.1021/acs.nanolett.8b03378
[53] Valev V K, Silhanek A V, Verellen N, et al. Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures [J]. Phys Rev Lett, 2010, 104(12): 127401. doi:  10.1103/PhysRevLett.104.127401
[54] Valev V K, Smisdom N, Silhanek A V, et al. Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures [J]. Nano Lett, 2009, 9(11): 3945-3948. doi:  10.1021/nl9021623
[55] Linden S, Niesler F B, Forstner J, et al. Collective effects in second-harmonic generation from split-ring-resonator arrays [J]. Phys Rev Lett, 2012, 109(1): 015502. doi:  10.1103/PhysRevLett.109.015502
[56] Michaeli L, Keren-Zur S, Avayu O, et al. Nonlinear surface lattice resonance in plasmonic nanoparticle arrays [J]. Phys Rev Lett, 2017, 118(24): 243904. doi:  10.1103/PhysRevLett.118.243904
[57] Klein M W, Enkrich C, Wegener M, et al. Second-harmonic generation from magnetic metamaterials [J]. Science, 2006, 313(5786): 502-504. doi:  10.1126/science.1129198
[58] Husu H, Siikanen R, Makitalo J, et al. Metamaterials with tailored nonlinear optical response [J]. Nano Lett, 2012, 12(2): 673-677. doi:  10.1021/nl203524k
[59] Makarov S V, Petrov M I, Zywietz U, et al. Efficient second-harmonic generation in nanocrystalline silicon nanoparticles [J]. Nano Lett, 2017, 17(5): 3047-3053. doi:  10.1021/acs.nanolett.7b00392
[60] Gili V F, Carletti L, Locatelli A, et al. Monolithic AlGaAs second-harmonic nanoantennas [J]. Opt Express, 2016, 24(14): 15965-15971. doi:  10.1364/OE.24.015965
[61] Carletti L, Locatelli A, Stepanenko O, et al. Enhanced second-harmonic generation from magnetic resonance in AlGaAs nanoantennas [J]. Opt Express, 2015, 23(20): 26544-26550. doi:  10.1364/OE.23.026544
[62] Semmlinger M, Tseng M L, Yang J, et al. Vacuum ultraviolet light-generating metasurface [J]. Nano Lett, 2018, 18(9): 5738-5743. doi:  10.1021/acs.nanolett.8b02346
[63] Wang C, Li Z, Kim M H, et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides [J]. Nat Commun, 2017, 8(1): 2098. doi:  10.1038/s41467-017-02189-6
[64] Liu S, Sinclair M B, Saravi S, et al. Resonantly enhanced second-harmonic generation using iii-v semiconductor all-dielectric metasurfaces [J]. Nano Lett, 2016, 16(9): 5426-5432. doi:  10.1021/acs.nanolett.6b01816
[65] Shcherbakov M R, Neshev D N, Hopkins B, et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response [J]. Nano Lett, 2014, 14(11): 6488-6492. doi:  10.1021/nl503029j
[66] Kroychuk M K, Shorokhov A S, Yagudin D F, et al. Enhanced nonlinear light generation in oligomers of silicon nanoparticles under vector beam illumination [J]. Nano Lett, 2020, 20(5): 3471-3477. doi:  10.1021/acs.nanolett.0c00393
[67] Semmlinger M, Zhang M, Tseng M L, et al. Generating third harmonic vacuum ultraviolet light with a TiO<sub>2</sub> metasurface [J]. Nano Lett, 2019, 19(12): 8972-8978. doi:  10.1021/acs.nanolett.9b03961
[68] Liu S, Vabishchevich P P, Vaskin A, et al. An all-dielectric metasurface as a broadband optical frequency mixer [J]. Nat Commun, 2018, 9(1): 2507. doi:  10.1038/s41467-018-04944-9
[69] Shorokhov A S, Melik-Gaykazyan E V, Smirnova D A, et al. Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic fano resonances [J]. Nano Lett, 2016, 16(8): 4857-4861. doi:  10.1021/acs.nanolett.6b01249
[70] Yang Y, Wang W, Boulesbaa A, et al. Nonlinear fano-resonant dielectric metasurfaces [J]. Nano Lett, 2015, 15(11): 7388-7393. doi:  10.1021/acs.nanolett.5b02802
[71] Xu L, Rahmani M, Zangeneh Kamali K, et al. Boosting third-harmonic generation by a mirror-enhanced anapole resonator [J]. Light Sci Appl, 2018, 7(7): 44.
[72] Timofeeva M, Lang L, Timpu F, et al. Anapoles in free-standing iii-v nanodisks enhancing second-harmonic generation [J]. Nano Lett, 2018, 18(6): 3695-3702. doi:  10.1021/acs.nanolett.8b00830
[73] Shibanuma T, Grinblat G, Albella P, et al. Efficient third harmonic generation from metal-dielectric hybrid nanoantennas [J]. Nano Lett, 2017, 17(4): 2647-2651. doi:  10.1021/acs.nanolett.7b00462
[74] Grinblat G, Li Y, Nielsen M P, et al. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode [J]. Nano Lett, 2016, 16(7): 4635-4640. doi:  10.1021/acs.nanolett.6b01958
[75] Koshelev K, Kruk S, Melik-Gaykazyan E, et al. Subwavelength dielectric resonators for nonlinear nanophotonics [J]. Science, 2020, 367(6475): 288-292. doi:  10.1126/science.aaz3985
[76] Carletti L, Koshelev K, De Angelis C, et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum [J]. Phys Rev Lett, 2018, 121(3): 033903. doi:  10.1103/PhysRevLett.121.033903
[77] Liu Z, Xu Y, Lin Y, et al. High-Q quasibound states in the continuum for nonlinear metasurfaces [J]. Phys Rev Lett, 2019, 123(25): 253901. doi:  10.1103/PhysRevLett.123.253901
[78] Miroshnichenko A E, Evlyukhin A B, Yu Y F, et al. Nonradiating anapole modes in dielectric nanoparticles [J]. Nat Commun, 2015, 6: 8069. doi:  10.1038/ncomms9069
[79] Hsu C W, Zhen B, Stone A D, et al. Bound states in the continuum [J]. Nature Reviews Materials, 2016, 1(9).
[80] Azzam S I, Shalaev V M, Boltasseva A, et al. Formation of bound states in the continuum in hybrid plasmonic-photonic systems [J]. Phys Rev Lett, 2018, 121(25): 253901. doi:  10.1103/PhysRevLett.121.253901
[81] Rybin M V, Koshelev K L, Sadrieva Z F, et al. High-Q supercavity modes in subwavelength dielectric resonators [J]. Phys Rev Lett, 2017, 119(24): 243901. doi:  10.1103/PhysRevLett.119.243901
[82] Kruk S, Poddubny A, Smirnova D, et al. Nonlinear light generation in topological nanostructures [J]. Nat Nanotechnol, 2019, 14(2): 126-130. doi:  10.1038/s41565-018-0324-7
[83] Smirnova D, Kruk S, Leykam D, et al. Third-harmonic generation in photonic topological metasurfaces [J]. Phys Rev Lett, 2019, 123(10): 103901. doi:  10.1103/PhysRevLett.123.103901
[84] Liu H, Guo C, Vampa G, et al. Enhanced high-harmonic generation from an all-dielectric metasurface [J]. Nature Physics, 2018, 14(10): 1006-1010. doi:  10.1038/s41567-018-0233-6
[85] Sivis M, Taucer M, Vampa G, et al. Tailored semiconductors for high-harmonic optoelectronics [J]. Science, 2017, 357(6348): 303-306. doi:  10.1126/science.aan2395
[86] Chen S, Li G, Zeuner F, et al. Symmetry-selective third-harmonic generation from plasmonic metacrystals [J]. Phys Rev Lett, 2014, 113(3): 033901. doi:  10.1103/PhysRevLett.113.033901
[87] Konishi K, Higuchi T, Li J, et al. Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry [J]. Phys Rev Lett, 2014, 112(13): 135502. doi:  10.1103/PhysRevLett.112.135502
[88] Valev V K, Baumberg J J, De Clercq B, et al. Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale [J]. Adv Mater, 2014, 26(24): 4074-4081. doi:  10.1002/adma.201401021
[89] Chen S, Zeuner F, Weismann M, et al. Giant nonlinear optical activity of achiral origin in planar metasurfaces with quadratic and cubic nonlinearities [J]. Adv Mater, 2016, 28(15): 2992-2999. doi:  10.1002/adma.201505640
[90] Belardini A, Larciprete M C, Centini M, et al. Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires [J]. Phys Rev Lett, 2011, 107(25): 257401. doi:  10.1103/PhysRevLett.107.257401
[91] Chen S, Reineke B, Li G, et al. Strong nonlinear optical activity induced by lattice surface modes on plasmonic metasurface [J]. Nano Lett, 2019, 19(9): 6278-6283. doi:  10.1021/acs.nanolett.9b02417
[92] Ren M, Plum E, Xu J, et al. Giant nonlinear optical activity in a plasmonic metamaterial [J]. Nat Commun, 2012, 3: 833. doi:  10.1038/ncomms1805
[93] Segal N, Keren-Zur S, Hendler N, et al. Controlling light with metamaterial-based nonlinear photonic crystals [J]. Nature Photonics, 2015, 9(3): 180-184. doi:  10.1038/nphoton.2015.17
[94] Wolf O, Campione S, Benz A, et al. Phased-array sources based on nonlinear metamaterial nanocavities [J]. Nat Commun, 2015, 6: 7667. doi:  10.1038/ncomms8667
[95] Tymchenko M, Gomez-Diaz J S, Lee J, et al. Gradient nonlinear pancharatnam-berry metasurfaces [J]. Phys Rev Lett, 2015, 115(20): 207403. doi:  10.1103/PhysRevLett.115.207403
[96] Li G, Chen S, Pholchai N, et al. Continuous control of the nonlinearity phase for harmonic generations [J]. Nat Mater, 2015, 14(6): 607-612. doi:  10.1038/nmat4267
[97] Almeida E, Shalem G, Prior Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces [J]. Nat Commun, 2016, 7: 10367. doi:  10.1038/ncomms10367
[98] Zang W, Qin Z, Yang X, et al. Polarization generation and manipulation based on nonlinear plasmonic metasurfaces [J]. Advanced Optical Materials, 2019, 7(10): 10.1002/adom.201801747. doi:  10.1002/adom.201801747
[99] Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography [J]. Nat Commun, 2016, 7: 12533. doi:  10.1038/ncomms12533
[100] Ye W, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography [J]. Nat Commun, 2016, 7: 11930. doi:  10.1038/ncomms11930
[101] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays [J]. Nature, 1998, 391(6668): 667-669. doi:  10.1038/35570
[102] Altewischer E, van Exter M P, Woerdman J P. Plasmon-assisted transmission of entangled photons [J]. Nature, 2002, 418(6895): 304-306. doi:  10.1038/nature00869
[103] Moreno E, Garcia-Vidal F J, Erni D, et al. Theory of plasmon-assisted transmission of entangled photons [J]. Phys Rev Lett, 2004, 92(23): 236801. doi:  10.1103/PhysRevLett.92.236801
[104] Fasel S, Robin F, Moreno E, et al. Energy-time entanglement preservation in plasmon-assisted light transmission [J]. Phys Rev Lett, 2005, 94(11): 110501. doi:  10.1103/PhysRevLett.94.110501
[105] Huck A, Smolka S, Lodahl P, et al. Demonstration of quadrature-squeezed surface plasmons in a gold waveguide [J]. Phys Rev Lett, 2009, 102(24): 246802. doi:  10.1103/PhysRevLett.102.246802
[106] Tan S F, Wu L, Yang J K, et al. Quantum plasmon resonances controlled by molecular tunnel junctions [J]. Science, 2014, 343(6178): 1496-1499. doi:  10.1126/science.1248797
[107] Kolesov R, Grotz B, Balasubramanian G, et al. Wave–particle duality of single surface plasmon polaritons [J]. Nature Physics, 2009, 5(7): 470-474. doi:  10.1038/nphys1278
[108] Dheur M C, Devaux E, Ebbesen T W, et al. Single-plasmon interferences [J]. Sci Adv, 2016, 2(3): e1501574. doi:  10.1126/sciadv.1501574
[109] Cerf N J, Bourennane M, Karlsson A, et al. Security of quantum key distribution using d-level systems [J]. Phys Rev Lett, 2002, 88(12): 127902. doi:  10.1103/PhysRevLett.88.127902
[110] Gisin N, Thew R. Security of quantum key distribution using d-level systems [J]. Nat Photonics, 2007, 1(3): 165-171. doi:  10.1038/nphoton.2007.22
[111] Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution [J]. Rev Mod Phys, 2009, 81(3): 1301-1350. doi:  10.1103/RevModPhys.81.1301
[112] Lo H K, Curty M, Tamaki K. Secure quantum key distribution [J]. Nat Photonics, 2014, 8(8): 595-604. doi:  10.1038/nphoton.2014.149
[113] Wang X L, Cai X D, Su Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon [J]. Nature, 2015, 518(7540): 516-519. doi:  10.1038/nature14246
[114] Bouchard F, Fickler R, Boyd R W, et al. High-dimensional quantum cloning and applications to quantum hacking [J]. Sci Adv, 2017, 3(2): e1601915. doi:  10.1126/sciadv.1601915
[115] Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics [J]. Nature, 2001, 409(6816): 46-52. doi:  10.1038/35051009
[116] O'Brien J L. Optical quantum computing [J]. Science, 2007, 318(5856): 1567-1570. doi:  10.1126/science.1142892
[117] Neeley M, Ansmann M, Bialczak R C, et al. Emulation of a quantum spin with a superconducting phase qudit [J]. Science, 2009, 325(5941): 722-725. doi:  10.1126/science.1173440
[118] Lanyon B P, Barbieri M, Almeida M P, et al. Simplifying quantum logic using higher-dimensional Hilbert spaces [J]. Nat Phys, 2008, 5(2): 134-140.
[119] Kaltenbaek R, Lavoie J, Zeng B, et al. Optical one-way quantum computing with a simulated valence-bond solid [J]. Nat Phys, 2010, 6(11): 850-854. doi:  10.1038/nphys1777
[120] Aspuru-Guzik A, Walther P. Photonic quantum simulators [J]. Nat Phys, 2012, 8(4): 285-291. doi:  10.1038/nphys2253
[121] Georgescu I M, Ashhab S, Nori F. Quantum simulation [J]. Rev Mod Phys, 2014, 86(1): 153-185. doi:  10.1103/RevModPhys.86.153
[122] Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology [J]. Nat Photonics, 2011, 5(4): 222-229. doi:  10.1038/nphoton.2011.35
[123] Pirandola S, Bardhan B R, Gehring T, et al. Advances in photonic quantum sensing [J]. Nat Photonics, 2018, 12(12): 724-733. doi:  10.1038/s41566-018-0301-6
[124] Ming Y, Zhang W, Tang J, et al. Photonic entanglement based on nonlinear metamaterials [J]. Laser & Photonics Reviews, 2020, 14(5): 1900146.
[125] Li L, Liu Z, Ren X, et al. Metalens-array-based high-dimensional and multiphoton quantum source [J]. Science, 2020, 368(6498): 1487-1490. doi:  10.1126/science.aba9779
[126] Stav T, Faerman A, Maguid E, et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials [J]. Science, 2018, 361(6407): 1101-1104. doi:  10.1126/science.aat9042
[127] Wang K, Titchener J G, Kruk S S, et al. Quantum metasurface for multiphoton interference and state reconstruction [J]. Science, 2018, 361(6407): 1104-1108. doi:  10.1126/science.aat8196
[128] Asano M, Bechu M, Tame M, et al. Distillation of photon entanglement using a plasmonic metamaterial [J]. Sci Rep, 2015, 5: 18313.
[129] Uriri S A, Tashima T, Zhang X, et al. Active control of a plasmonic metamaterial for quantum state engineering [J]. Phys Rev A, 2018, 97(5): 053810.
[130] Lyons A, Oren D, Roger T, et al. Coherent metamaterial absorption of two-photon states with 40% efficiency [J]. Phys Rev A, 2019, 99(1): 011801.
[131] Altuzarra C, Vezzoli S, Valente J, et al. Coherent perfect absorption in metamaterials with entangled photons [J]. Acs Photonics, 2017, 4(9): 2124-2128. doi:  10.1021/acsphotonics.7b00514
[132] Roger T, Vezzoli S, Bolduc E, et al. Coherent perfect absorption in deeply subwavelength films in the single-photon regime [J]. Nat Commun, 2015, 6: 7031. doi:  10.1038/ncomms8031
[133] Altuzarra C, Lyons A, Yuan G H, et al. Imaging of polarization-sensitive metasurfaces with quantum entanglement [J]. Phys Rev A, 2019, 99(2): 10.1103/PhysRevA.99.020101. doi:  10.1103/PhysRevA.99.020101
[134] Georgi P, Massaro M, Luo K H, et al. Metasurface interferometry toward quantum sensors [J]. Light Sci Appl, 2019, 8: 70. doi:  10.1038/s41377-019-0182-6
[135] Chen S Z, Zhou X X, Mi C Q, et al. Dielectric metasurfaces for quantum weak measurements [J]. Appl Phys Lett, 2017, 110(16): 161115. doi:  10.1063/1.4982164
[136] Torma P, Barnes W L. Strong coupling between surface plasmon polaritons and emitters: a review [J]. Rep Prog Phys, 2015, 78(1): 013901. doi:  10.1088/0034-4885/78/1/013901
[137] Jha P K, Ni X, Wu C, et al. Metasurface-Enabled Remote Quantum Interference [J]. Phys Rev Lett, 2015, 115(2): 025501. doi:  10.1103/PhysRevLett.115.025501
[138] Jha P K, Shitrit N, Kim J, et al. Metasurface-mediated quantum entanglement [J]. ACS Photonics, 2017, 5(3): 971-976.
[139] Jha P K, Shitrit N, Ren X, et al. Spontaneous exciton valley coherence in transition metal dichalcogenide monolayers interfaced with an anisotropic metasurface [J]. Phys Rev Lett, 2018, 121(11): 116102. doi:  10.1103/PhysRevLett.121.116102
[140] Kornovan D, Petrov M, Iorsh I. Noninverse dynamics of a quantum emitter coupled to a fully anisotropic environment [J]. Phys Rev A, 2019, 100(3): 033840.
[141] Lassalle E, Lalanne P, Aljunid S, et al. Long-lifetime coherence in a quantum emitter induced by a metasurface [J]. Phys Rev A, 2020, 101(1): 013837.