[1] Shen Y, Wang X, Xie Z, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities [J]. Light: Science & Applications, 2019, 8(1): 90. doi:  https://doi.org/10.1038/s41377-019-0194-2
[2] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Physical Review A, 1992, 45(11): 8185. doi:  10.1103/PhysRevA.45.8185
[3] Fickler R, Campbell G, Buchler B, et al. Quantum entanglement of angular momentum states with quantum numbers up to 10, 010 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13642-13647. doi:  https://www.jstor.org/stable/26472653
[4] Fickler R, Lapkiewicz R, Plick W N, et al. Quantum entanglement of high angular momenta [J]. Science, 2012, 338(6107): 640-643. doi:  10.1126/science.1227193
[5] Emile O, Emile J. Naked eye picometer resolution in a Michelson interferometer using conjugated twisted beams [J]. Optics Letters, 2017, 42(2): 354-357. doi:  10.1364/OL.42.000354
[6] Omatsu T, Miyamoto K, Toyoda K, et al. A new twist for materials science: the formation of chiral structures using the angular momentum of light [J]. Advanced Optical Materials, 2019, 7(14): 1801672. doi:  10.1002/adom.201801672
[7] Omatsu T, Miyamoto K, Yuyama K I, et al. Laser-induced forward-transfer with light possessing orbital angular momentum [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 52: 100535. doi:  10.1016/j.jphotochemrev.2022.100535
[8] Leach J, Jack B, Romero J, et al. Quantum correlations in optical angle–orbital angular momentum variables [J]. Science, 2010, 329(5992): 662-665. doi:  10.1126/science.1190523
[9] Wang B, Shi J, Zhang T, et al. Improved lateral resolution with an annular vortex depletion beam in STED microscopy [J]. Optics Letters, 2017, 42(23): 4885-4888. doi:  10.1364/OL.42.004885
[10] Ren Y, Li L, Wang Z, et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications [J]. Scientific Reports, 2016, 6: 33306. doi:  10.1038/srep33306
[11] Kotlyar V V, Khonina S N, Almazov A A, et al. Elliptic Laguerre-Gaussian beams [J]. Journal of the Optical Society of America, A. Optics, Image Science, and Vision, 2006, 23(1): 43-56. doi:  10.1364/JOSAA.23.000043
[12] Mcgloin D, Dholakia K. Bessel beams: Diffraction in a new light [J]. Contemporary Physics, 2005, 46(1): 15-28. doi:  10.1080/0010751042000275259
[13] Smith P W. Mode selection in lasers [J]. Proceedings of the IEEE, 1972, 60(4): 422-440. doi:  10.1109/PROC.1972.8649
[14] Zhang Y, Yu H, Zhang H, et al. Self-mode-locked Laguerre-Gaussian beam with staged topological charge by thermal-optical field coupling [J]. Optics Express, 2016, 24(5): 5514-5522. doi:  10.1364/OE.24.005514
[15] Chang M T, Liang H C, Su K W, et al. Exploring transverse pattern formation in a dual-polarization self-mode-locked monolithic Yb: KGW laser and generating a 25-GHz sub-picosecond vortex beam via gain competition [J]. Optics Express, 2016, 24(8): 8754-8762. doi:  10.1364/OE.24.008754
[16] Yang Y, Wang W, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation [J]. Nano Letters, 2014, 14(3): 1394-1399. doi:  10.1021/nl4044482
[17] Malyutin A A, Ilyukhin V A. Generation of high-order Hermite-Gaussian modes in a flashlamp-pumped neodymium phosphate glass laser and their conversion to Laguerre-Gaussian modes [J]. Quantum Electronics, 2007, 37(2): 181. doi:  10.1070/QE2007v037n02ABEH013430
[18] Chen Y, Fang Z X, Ren Y X, et al. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device [J]. Applied Optics, 2015, 54(27): 8030-8035. doi:  10.1364/AO.54.008030
[19] Beijersbergen M W, Allen L, Van der Veen H, et al. Astigmatic laser mode converters and transfer of orbital angular momentum [J]. Optics Communications, 1993, 96(1-3): 123-132. doi:  10.1016/0030-4018(93)90535-D
[20] Gu Miaojun, Zeng Jun, Li Jinhong. Generation and Interference of vortex beam based on spiral phase plate [J]. Laser & Optoelectronics Progress, 2016, 53(9): 092602. doi:  10.3788/LOP53.092602
[21] Xin J, Dai K, Zhong L, et al. Generation of optical vortices by using spiral phase plates made of polarization dependent devices [J]. Optics Letters, 2014, 39(7): 1984-1987. doi:  10.1364/OL.39.001984
[22] Yan Y, Zhang L, Wang J, et al. Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes [J]. Optics Letters, 2012, 37(16): 3294-3296. doi:  10.1364/OL.37.003294
[23] Karimi E, Schulz S A, De Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface [J]. Light: Science & Applications, 2014, 3(5): e167.
[24] Qiao Z, Xie G, Wu Y, et al. Generating high‐charge optical vortices directly from laser up to 288 th order [J]. Laser & Photonics Reviews, 2018, 12(8): 1800019.
[25] Naidoo D, Roux F S, Dudley A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser [J]. Nature Photonics, 2016, 10(5): 327-332. doi:  10.1038/nphoton.2016.37
[26] Kim J W, Clarkson W A. Selective generation of Laguerre-Gaussian (LG0n) mode output in a diode-laser pumped Nd:YAG laser [J]. Optics Communications, 2013, 296: 109-112. doi:  10.1016/j.optcom.2013.01.046.
[27] Wang S, Zhang S L, Qiao H, et al. Direct generation of vortex beams from a double-end polarized pumped Yb: KYW laser [J]. Optics Express, 2018, 26(21): 26925-26932. doi:  10.1364/OE.26.026925
[28] Huang X, Xu B, Cui S, et al. Direct generation of vortex laser by rotating induced off-axis pumping [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-6.
[29] Yuan Y, Tong L, Cai F, et al. Direct generation of optical vortex arrays by rotating in an all-solid-state Yb: CALGO laser [J]. Optical Materials Express, 2021, 11(6): 1594-1602. doi:  10.1364/OME.425827
[30] Kim D J, Kim J W. Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser [J]. Optics Letters, 2015, 40(3): 399-402. doi:  10.1364/OL.40.000399
[31] Chen Y F, Lan Y P, Wang S C. Generation of Laguerre-Gaussian modes in fiber-coupled laser diode end-pumped lasers [J]. Applied Physics B, 2001, 72: 167-170.
[32] Wang M, Ma Y, Sheng Q, et al. Laguerre-Gaussian beam generation via enhanced intracavity spherical aberration [J]. Optics Express, 2021, 29(17): 27783-27790. doi:  10.1364/OE.436110
[33] Sheng Q, Wang A, Ma Y, et al. Intracavity spherical aberration for selective generation of single-transverse-mode Laguerre-Gaussian output with order up to 95 [J]. PhotoniX, 2022, 3(1): 4. doi:  10.1186/s43074-022-00050-8
[34] Qiao Z, Wan Z, Xie G, et al. Multi-vortex laser enabling spatial and temporal encoding [J]. PhotoniX, 2020, 1(1): 1-14. doi:  10.1186/s43074-020-00006-w
[35] Zhou Lunbin, Feng Kai, Wang Dong, et al. Research on direct generation of high-power and high-order vortex lasers using defect-mirror technology (Invited) [J]. Infrared and Laser Engineering, 2021, 50(9): 20210408. (in Chinese) doi:  10.3788/IRLA20210408
[36] Ito A, Kozawa Y, Sato S. Generation of hollow scalar and vector beams using a spot-defect mirror [J]. Journal of the Optical Society of America, A. Optics, Image Science, and Vision, 2010, 27(9): 2072-2077. doi:  10.1364/JOSAA.27.002072
[37] Chard S P, Shardlow P C, Damzen M J. High-power non-astigmatic TEM00 and vortex mode generation ina compact bounce laser design [J]. Applied Physics B, 2009, 97(2): 275-280. doi:  10.1007/s00340-009-3642-5
[38] Lee A J, Zhang C Y, Omatsu T, et al. An intracavity, frequency-doubled self-Raman vortex laser [J]. Optics Express, 2014, 22(5): 5400-5409. doi:  10.1364/OE.22.005400
[39] Lee A J, Pask H M, Omatsu T. A continuous-wave vortex Raman laser with sum frequency generation [J]. Applied Physics B, 2016, 122(3): 1-7.
[40] Tung J C, Ma Y Y, Miyamoto K, et al. Bottle beam generation from a frequency-doubled Nd:YVO4 laser [J]. Scientific Reports, 2018, 8(1): 1-6.
[41] Matsumoto N, Ando T, Inoue T, et al. Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators [J]. Journal of the Optical Society of America A, 2008, 25(7): 1642-1651. doi:  10.1364/JOSAA.25.001642
[42] Sueda K, Miyaji G, Miyanaga N, et al. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses [J]. Optics Express, 2004, 12(15): 3548-3553. doi:  10.1364/OPEX.12.003548
[43] Chaitanya N A, Aadhi A, Jabir M V, et al. Frequency-doubling characteristics of high-power, ultrafast vortex beams [J]. Optics Letters, 2015, 40.11: 2614-2617. doi:  https://doi.org/10.1364/OL.40.002614
[44] Hui X, Zheng S, Hu Y, et al. Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam [J]. IEEE Antennas & Wireless Propagation Letters, 2015, 14: 966-969.
[45] Chaitanya N, Aadhi A, Jabir M V, et al. Frequency-doubling characteristics of high-power, ultrafast vortex beams [J]. Optics Letters, 2015, 40(11): 2614-2617. doi:  10.1364/OL.40.002614
[46] Sasaki Y, Yusufu T, Miyamoto K, et al. Highly efficient frequency doubling of optical vortex[C]//Conference on Lasers & Electro-optics Pacific Rim, 2015: 15717830.
[47] Yusufu T, Sasaki Y, Araki S, et al. Beam propagation of efficient frequency-doubled optical vortices [J]. Applied Optics, 2016, 55(19): 5263-5266. doi:  10.1364/AO.55.005263
[48] Chaitanya N A, Kumar S C, Devi K, et al. Ultrafast optical vortex beam generation in the ultraviolet [J]. Optics Letters, 2016, 41(12): 2715-2718. doi:  10.1364/OL.41.002715
[49] Yoshihiro Nishigata, Cheng-Yeh Lee, Yuji Miyamoto, et al. Optical vortex pumped solid-state Raman laser[C]//Solid State Lasers XXVI: Technology and Devices, SPIE, 2017, 10082: 13-16.
[50] Saripalli R K, Ghosh A, Chaitanya N A, et al. Frequency-conversion of vector vortex beams with space-variant polarization in single-pass geometry [J]. Applied Physics Letters, 2019, 115(5): 051101. doi:  10.1063/1.5111593
[51] Schemmel P, Pisano G, Maffei B. Modular spiral phase plate design for orbital angular momentum generation at millimetre wavelengths [J]. Optics Express, 2014, 22(12): 14712-14726. doi:  10.1364/OE.22.014712
[52] Gao Mingwei, Gao Chunqing, Lin Zhifeng. Generation of twisted stigmatic beam and transfer of orbital angular momentum during the beam transformation [J]. Acta Physica Sinica, 2007, 56(4): 2184-2190. doi:  10.7498/aps.56.2184
[53] Shen Y, Meng Y, Fu X, et al. Wavelength-tunable Hermite-Gaussian modes and an orbital-angular-momentum-tunable vortex beam in a dual-off-axis pumped Yb:CALGO laser [J]. Optics Letters, 2018, 43(2): 291-294. doi:  10.1364/OL.43.000291
[54] Zhao Y, Wang Z, Yu H, et al. Direct generation of optical vortex pulses [J]. Applied Physics Letters, 2012, 101(3): 031113. doi:  10.1063/1.4737943
[55] Tung J C, Liu K W, Chen S C. Generating multiple optical vortices in orange beams induced by selectively pumped frequency-doubled solid-state Raman lasers with mode conversion [J]. Optics Letters, 2022, 47(4): 945-948. doi:  10.1364/OL.444803
[56] Pan J, Shen Y, Wan Z, et al. Index-tunable structured-light beams from a laser with an intracavity astigmatic mode converter [J]. Physical Review Applied, 2020, 14(4): 44048. doi:  10.1103/PhysRevApplied.14.044048
[57] Kränkel C, Marzahl D T, Moglia F, et al. Out of the blue: semiconductor laser pumped visible rare‐earth doped lasers [J]. Laser & Photonics Reviews, 2016, 10(4): 548-568.
[58] Ma Y, Tung J C, Chen Y F, et al. Handedness control of visible optical vortex output from a diode-pumped Pr3+:YLF Laser[C]//European Quantum Electronics Conference. Institute of Electrical and Electronics Engineers Inc, 2019: 19148864.
[59] Ma Y, Tung J C, Miyamoto K, et al. Direct generation of vortex beams from a diode-pumped Pr3+:YLF laser [C]//CLEO: Applications and Technology, 2019: 18846954.
[60] Ma Y, Vallés A, Tung J C, et al. Direct generation of red and orange optical vortex beams from an off-axis diode-pumped Pr3+: YLF laser [J]. Optics Express, 2019, 27(13): 18190-18200. doi:  10.1364/OE.27.018190
[61] Rao A S, Miamoto K, Omatsu T. Ultraviolet intracavity frequency-doubled Pr3+: LiYF4 orbital Poincaré laser [J]. Optics Express, 2020, 28(25): 37397-37405. doi:  10.1364/OE.411624
[62] Rao A S, Miike T, Miamoto K, et al. Direct generation of 523 nm orbital Poincaré mode from a diode-pumped Pr3+: LiYF4 laser with an off-axis optical needle pumping geometry [J]. Optics Express, 2021, 29(19): 30409-30418. doi:  10.1364/OE.439491
[63] Rao A S, Miyamoto K, Omatsu T. Direct generation of vortex lattice modes from an intracavity frequency doubled Pr:YLF laser[C]//2021 Conference on Lasers and Electro-Optics (CLEO), 2021: 21411084.
[64] Lin X, Chen M, Feng Q, et al. LD-pumped high-power CW Pr3+:YLF Laguerre-Gaussian lasers at 639 nm [J]. Optics & Laser Technology, 2021, 142: 107273.
[65] Lin X, Feng Q, Zhu Y, et al. Diode-pumped wavelength-switchable visible Pr3+:YLF laser and vortex laser around 670 nm [J]. Opto-Electronic Advances, 2021, 4(4): 210006. doi:  10.29026/oea.2021.210006
[66] Tian Q Y, Xu B, Li N, et al. Direct generation of orthogonally polarized dual-wavelength continuous-wave and passively Q-switched vortex beam in diode-pumped Pr:YLF lasers [J]. Optics Letters, 2019, 44(22): 5586-5589. doi:  10.1364/OL.44.005586
[67] Li N, Huang J J, Xu B, et al. Direct generation of an ultrafast vortex beam in a CVD-graphene-based passively mode-locked Pr:LiYF4 visible laser [J]. Photonics Research, 2019, 7(11): 1209-1213. doi:  10.1364/PRJ.7.001209
[68] Li N,Xu B, Cui S W, et al. High-order vortex generation from CW and passively Q-switched Pr:YLF visible lasers [J]. IEEE Photonics Technology Letters, 2019, 31(17): 1457-1460. doi:  10.1109/LPT.2019.2931907
[69] Luo S, Cai Z, Sheng C, et al. 604-nm high-order vortex beams directly generated from a Pr:YLF laser with a cavity-loss-induced gain switching mechanism [J]. Optics & Laser Technology, 2020, 127: 106185.
[70] Lin X J, Cui S W, Ji S H, et al. LD-pumped high-power high-efficiency orange vortex Pr3+:YLF lasers [J]. Optics & Laser Technology, 2021, 133: 106571.
[71] Cui S, Li N, Xu B, et al. Direct generation of visible vortex Hermite-Gaussian modes in a diode-pumped Pr:YLF laser [J]. Optics & Laser Technology, 2020, 131: 106389.
[72] Zhao Y, Liu Q, Zhou W, et al. ~1 mJ pulsed vortex laser at 1645 nm with well-defined helicity [J]. Optics Express, 2016, 24(14): 15596. doi:  10.1364/OE.24.015596
[73] Lin D, Daniel J M O, Clarkson W A. Controlling the handedness of directly excited Laguerre-Gaussian modes in a solid-state laser [J]. Optics Letters, 2014, 39(13): 3903-3906. doi:  10.1364/OL.39.003903
[74] Li J, Yao Y, Yu J, et al. Efficient vortex laser with annular pumping formed by circle Dammann grating [J]. IEEE Photonics Technology Letters, 2015, 28(4): 473-476.
[75] He H S, Chen Z, Dong J. Direct generation of vector vortex beams with switchable radial and azimuthal polarizations in a monolithic Nd:YAG microchip laser [J]. Applied Physics Express, 2017, 10(5): 052701. doi:  10.7567/APEX.10.052701
[76] Wei M D, Lai Y S, Chang K C. Generation of a radially polarized laser beam in a single microchip Nd:YVO4 laser [J]. Optics Letters, 2013, 38(14): 2443-2445. doi:  10.1364/OL.38.002443
[77] Fang Z, Yao Y, Xia K, et al. Actively Q-switched and vortex Nd:YAG laser [J]. Optics Communications, 2015, 347: 59-63. doi:  10.1016/j.optcom.2015.02.037
[78] Yang Q, Yang Z X, Cai D Y, et al. Direct generation of continuous-wave and passively Q-switched visible vortex beams from a doughnut-shaped diode-pumped Pr:YLF laser [J]. Optics Express, 2022, 30(13): 23909-23917. doi:  10.1364/OE.457732
[79] Senatsky Y, Bisson J F, Shelobolin A, et al. Circular modes selection in Yb:YAG laser using an intracavity lens with spherical aberration [J]. Laser Physics, 2009, 19(5): 911-918. doi:  10.1134/S1054660X09050028
[80] Rao A S, Morohashi T, Miike T, et al. Generation of circular geometric modes from Pr3+: YLF laser with spherical aberration [C]//Conference on Lasers and Electro-Optics/Pacific Rim. US: Optica Publishing Group, 2022: CThP1H_02.
[81] Rao A S, Morohashi T, Kerridge-Johns W R, et al. Generation of higher-order Laguerre–Gaussian modes from a diode-pumped Pr3+:LiYF4 laser with an intra-cavity spherical aberration [J]. Journal of the Optical Society of America B-Optical Physics, 2023, 40(2): 406-411. doi:  10.1364/JOSAB.481727
[82] Zou J, Kang Z, Wang R, et al. Green/red pulsed vortex-beam oscillations in all-fiber lasers with visible-resonance gold nanorods [J]. Nanoscale, 2019, 11(34): 15991-16000. doi:  10.1039/C9NR05096E
[83] Dong Z, Sun H, Zhang Y, et al. Visible-wavelength-tunable, vortex-beam fiber laser based on a long-period fiber grating [J]. IEEE Photonics Technology Letters, 2021, 33(21): 1173-1176. doi:  10.1109/LPT.2021.3111191
[84] Xu H, Yang L. Conversion of orbital angular momentum of light in chiral fiber gratings [J]. Optics Letters, 2013, 38(11): 1978-1980. doi:  10.1364/OL.38.001978
[85] Yao H, Shi F, Wu Z, et al. A mode generator and multiplexer at visible wavelength based on all-fiber mode selective coupler [J]. Nanophotonics, 2020, 9(4): 973-981. doi:  10.1515/nanoph-2020-0050
[86] Zou Jinhai, Wang Hongjian, Li Weiwei, et al. Visible-wavelength all-fiber vortex laser [J]. IEEE Photonics Technology Letters, 2019, 31(18): 1487-1490. doi:  10.1109/LPT.2019.2934150
[87] Sun Honggang, Zou Jinhai, Ruan Qiujun, et al. Visible-wave-length all-fiber mode-locked vortex laser [J]. Journal of Lightwave Technology, 2022, 40(1): 191-195. doi:  10.1109/JLT.2021.3117997
[88] Kerridge-Johns W R, Rao A S, Fujimoto Y, et al. Red, orange, and dual wavelength vortex emission from Pr:WPFGF fiber laser using a microscope slide output coupler [J]. Optics Express, 2023, 31(10): 16607-16614. doi:  https://doi.org/10.1364/OE.491867