[1] Wong M H, Giraldo J P, Kwak S Y, et al. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics[J]. Nat Mater, 2017, 16(2):264-272.
[2] Miao J, Song Jinshu, Bo Xu, et al. Single pixel black phosphorus photodetector for near-infrared imaging[J]. Small, 2018, 14(2):1702082.
[3] Ye L, Li Hao, Chen Zefeng, et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction[J]. ACS Photonics, 2016, 3(4):692-699.
[4] Guo N, Hu Weida, Jiang Tao, et al. High-quality infrared imaging with graphene photodetectors at room temperature[J]. Nanoscale, 2016, 8(35):16065-16072.
[5] Zhu Zhengfeng, Zou Yousheng, Hu Weida, et al. Near-infrared plasmonic 2D semimetals for applications in communication and biology[J]. Advanced Functional Materials, 2016, 26(11):1793-1802.
[6] Li Zhen, Ezhilarasu, Goutham, et al. Indirect band gap emission by hot electron injection in Metal/MoS(2) and Metal/WSe(2) Heterojunctions[J]. Nano Lett, 2015, 15(6):3977-3982.
[7] Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology[J]. Nat Nanotechnol, 2015, 10(1):25-34.
[8] Zhong S. Progress in terahertz nondestructive testing:A review[J]. Frontiers of Mechanical Engineering, 2018, 14(3):273-281.
[9] Bandurin D A, Svintsov Dmitry, Gayduchenko Igor, et al. Resonant terahertz detection using graphene plasmons[J]. Nat Commun, 2018, 9(1):53-92.
[10] Luxmoore I J, Liu Peter, Li Penglei, et al. Graphene-metamaterial photodetectors for integrated infrared sensing[J]. ACS Photonics, 2016, 3(6):936-941.
[11] Guo Q, Pospischil Andreas, Bhuiyan Maruf, et al. Black phosphorus mid-infrared photodetectors with high gain[J]. Nano Lett, 2016, 16(7):4648-4655.
[12] Xu Ming, Gu Yuqian, Peng Ruoming, et al. Black phosphorus mid-infrared photodetectors[J]. Applied Physics B, 2017, 123(4):130.
[13] Wang Xudong, Wang Peng, Wang Jianlu, et al.Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics[J]. Advanced Materials, 2015, 27(42):6575-6581.
[14] Guo Junxiong, Li Shangdong, He Zhenbei, et al. Near-infrared photodetector based on few-layer MoS2 with sensitivity enhanced by localized surface plasmon resonance[J]. Applied Surface Science, 2019, 483:1037-1043.
[15] Wang F, Li Leigang, Huang Wenjuan, et al. Submillimeter 2D Bi2Se3 Flakes toward high-performance infrared photodetection at optical communication wavelength[J]. Advanced Functional Materials, 2018, 28(33):1802707.
[16] Sharma A, Bhattacharyya B,Srivastava A K, et al. High performance broadband photodetector using fabricated nanowires of bismuth selenide[J]. Sci Rep, 2016:6.
[17] Wang Xinran, Dai Guozhan, Liu Biao, et al. Broadband photodetectors based on topological insulator Bi2Se3 nanowire with enhanced performance by strain modulation effect[J]. Physica E:Low-dimensional Systems and Nanostructures, 2019, 114:113-620.
[18] Miao Jinshu, Hu Weida, Guo Nan, et al. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios[J]. Small, 2015, 11(8):936-942.
[19] Kim J, Park Sungjoon, Jang Houk, et al. Highly sensitive, gate-tunable, room-temperature mid-infrared photodetection based on graphene-Bi2Se3 heterostructure[J]. ACS Photonics, 2017, 4(3):482-488.
[20] Lin C, Grassi R, Low T, et al. Multilayer black phosphorus as a versatile mid-infrared electro-optic material[J]. Nano Lett, 2016, 16(3):1683-1689.
[21] Peng R, Khaliji K,Youngblood N, et al. Midinfrared electro-optic modulation in few-layer black phosphorus[J]. Nano Lett, 2017, 17(10):6315-6320.
[22] Chen X, Lu Xiaobo, Deng Bingchen, et al. Widely tunable black phosphorus mid-infrared photodetector[J]. Nat Commun, 2017, 8(1):16-72.
[23] Ye Ling, Wang Peng, Luo Wenjin, et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure[J]. Nano Energy, 2017, 37:53-60.
[24] Xiang Du, Han Cheng, Wu Jing, et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus[J]. Nat Commun, 2015, 6:64-85.
[25] Spirito D, Coquillat D, De B, et al. High performance bilayer-graphene terahertz detectors[J]. Applied Physics Letters, 2014, 104(6):061111.
[26] Tong J, Muthee M, Chen Shooyu, et al. Antenna enhanced graphene THz emitter and detector[J]. Nano Lett, 2015, 15(8):5295-5301.
[27] Viti L, Coquillat D, Politano A, et al. Plasma-wave terahertz detection mediated by topological insulators surface states[J]. Nano Lett, 2016, 16(1):80-87.
[28] Viti L, Hu Jin, Coquillat D, et al. Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response[J]. Sci Rep, 2016, 6:20474.
[29] Qin Hua, Liang Shixiong, Li Xiang, et al. Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor,[J]. Carbon, 2016, 116:760-765.
[30] Tang Weiwei, Politano A, Guo Cheng, et al. Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator[J]. Advanced Functional Materials, 2018, 28(31):1801786.
[31] Castilla S, Terres B, Autore M, et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction[J]. Nano Lett, 2019, 19(5):2765-2773.
[32] El Fatimy A, Schoen, Brongersma M L, et al. Epitaxial graphene quantum dots for high-performance terahertz bolometers[J]. Nat Nanotechnol, 2016, 11(4):335-338.
[33] Chalabi H, Schoen D, Brongersma M L. Hot-electron photodetection with a plasmonic nanostripe antenna[J]. Nano Lett, 2014, 14(3):1374-1380.
[34] Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nat Mater, 2012, 11(10):865-871.
[35] Viti L, Hu Jin, Coquillat D, et al. Black phosphorus terahertz photodetectors[J]. Adv Mater, 2015, 27(37):5567-5572.
[36] Viti L, Politano A, Zhang Kai, et al. Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes[J]. Nanoscale, 2019, 11(4):1995-2002.
[37] Liu Changlong, Wang Lin, Chen Xiaoshuang, et al. Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene[J]. Advanced Optical Materials, 2018, 6(24):1800836.
[38] Schlecht M T, Preu S, Malzer S, et al. An efficient Terahertz rectifier on the graphene/SiC materials platform[J]. Sci Rep, 2019, 9(1):11205.
[39] Yadav D, Tombet S B, Watanabe T, et al. Terahertz wave generation and detection in double-graphene layered van der Waals heterostructures[J]. 2D Materials, 2016, 3(4):11205.