[1] Miller M J, Mott A G, Ketchel B P. General optical limiting requirements [C]//SPIE Conference on Nonlinear Optical Liquids for Power Limiting and Imaging, 1988, 3472: 24-29.
[2] Scott W B. Southwest pilot injured by laser [J]. Aviation Week and Space Technology, Nov. 20, 1995: 92.
[3] Gertz B. Russians fire laser at helicopter [N]. The Washington Times, 1997-05-14(A1).
[4] Pentagon is unable to link Russian laser to eye injury [N]. The Washington Post, 1997-06-27(A22).
[5] Bunning T J, Natarajan L V, Schmitt M G, et al. Optical limiting in solutions of diphenyl polyenes [J]. Applied Optics, 1991, 30(30): 4341-4349.
[6] Soileau M J. Materials for Optical Switches, Isolators, and Limiters, Proc SPIE, vol. 1105 [C]. US: SPIE Press, 1989.
[7] Shirk J S, Pong R G S, Bartoli F J, et al. Optical limiter using a lead phthalocyanine [J]. Applied Physics Letters, 1993, 63(14): 1880-1882.
[8] Soileau M J. Nonlinears Optical Materials for Switching and Limiting, Proc SPIE, vol. 2229 [C]. US: SPIE Press, 1994.
[9] Tutt L W, Kost A. Optical limiting performance of C60 and C70 solutions [J]. Nature, 1992, 356: 225-226.
[10] Lawson C M. Nonlinear Optical Liquids and Power Limiters, Proc SPIE, vol. 3146 [C]. US: SPIE Press, 1997.
[11] Lawson C M. Nonlinear Optical Liquids for Power Limiting and Imaging, Proc SPIE, vol. 3472 [C]. US: SPIE Press, 1998.
[12] Lawson C M. Power-Limiting Materials and Devices, Proc SPIE, vol. 3798 [C]. US: SPIE Press, 1999.
[13] Eich M, Kuzyk M G, Lawson C M, et al. Linear, Nonlinear, and Power-Limiting Organics, Proc SPIE, vol. 4106 [C]. US: SPIE Press, 2000.
[14] Crane R, Lewis K, Van Stryland E, et al. Materials for optical limiting, MRS Proceedings, vol. 374 [C]. US: Materials Research Society Symposium, 1994.
[15] Sutherland R, Pachter R, Hood P, et al. Materials for optical limiting Ⅱ, MRS Proceedings, vol. 479 [C]. US: Materials Research Society Symposium, 1997.
[16] Nashimoto K, Pachter R, Wessels B W, et al. Thin films for optical waveguide devices and materials for optical limiting, MRS Proceedings, vol. 597 [C]. US: Materials Research Society Symposium, 2000.
[17] Li C, Zhang L, Wang R, et al. Dynamics of reverse saturable absorption and all-optical switching in C60 [J]. Journal of the Optical Society of America B, 1994, 11(8): 1356-1360.
[18] Perry J W, Mansour K, Marder S R, et al. Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines [J]. Optics Letters, 1994, 19(9): 625-627.
[19] Penzkofer A. Passive Q-switching and mode-locking for the generation of nanosecond to femtosecond pulses [J]. Applied Physics B, 1988, 46(1): 43-60.
[20] Reddy K P J. Applications of reverse saturable absorbers in laser science [J]. Current Issue, 1991, 61(8): 520-525.
[21] Speiser S, Orenstein M. Spatial light modulation via optically induced absorption changes in molecules [J]. Applied Optics, 1988, 27(14): 2944-2948.
[22] Yehuda B B, Harter D J, Raanan B. Optical pulse compressor composed of saturable and reverse saturable absorbers [J]. Chemical Physics Letter, 1986, 126(3-4): 280-284.
[23] Shen Y, Shuhendler A J, Ye D, et al. Two-photon excitation nanoparticles for photodynamic therapy [J]. Chemical Society Reviews, 2016, 45(24): 6725-6741.
[24] Gareth W J A. Photochemistry and Photophysics of Coordination Compounds: Platinum [M]//Vincenzo Balzani Sebastiano Campagna. Photochemistry and Photophysics of Coordination Compounds Ⅱ. Berlin: Springer, 2007: 205-268.
[25] Eryazici I, Moorefield C N, Newkome G R. Square-planar Pd(Ⅱ), Pt(Ⅱ), and Au(Ⅲ) terpyridine complexes: Their syntheses, physical properties, supramolecular constructs, and biomedical activities [J]. Chemical Reviews, 2008, 108(6): 1834-1895.
[26] Lippard S J. Platinum complexes: probes of polynucleotide structure and antitumor drugs [J]. Accounts of Chemical Research, 1978, 11(5): 211-217.
[27] Ratilla E M A, Brothers H M, Kostic N M. A transition-metal chromophore as a new, sensitive spectroscopic tag for proteins. Selective covalent labeling of histidine residues in cytochromesc with chloro(2,2':6'2"-terpyridine)platinum(Ⅱ) chloride [J]. Journal of the American Chemical Society, 1987, 109(15): 4592-4599.
[28] Wong K M-C, Tang W-S, Lu X, et al. Functionalized platinum(Ⅱ) terpyridyl alkynyl complexes as colorimetric and luminescence pH sensors [J]. Inorganic Chemistry, 2005, 44(5): 1492-1498.
[29] Wadas T J, Chakraborty S, Lachicotte R J, et al. Facile synthesis, structure, and luminescence properties of Pt(diimine)bis(arylacetylide) chromophore-donor dyads [J]. Inorganic Chemistry, 2005, 44(8): 2628-2638.
[30] Lu W, Mi B, Chan M C W, et al. Light-emitting tridentate cyclometalated platinum(Ⅱ) complexes containing σ-alkynyl auxiliaries: Tuning of photo- and electrophosphorescence [J]. Journal of the American Chemical Society, 2004, 126(15): 4958-4971.
[31] Fort Y, Comoy C. NHC—Nickel and —Platinum complexes in catalysis[J]. RSC Catalysis Series 6, 2011: 284-316.
[32] Staromlynska J, McKay T J, Bolger J A, et al. Evidence for broadband optical limiting in a Pt:ethynyl compound [J]. Journal of the Optical Society of America B, 1998, 15(6): 1731-1736.
[33] McKay T J, Bolger J A, Staromlynska J, et al. Linear and nonlinear optical properties of platinum-ethynyl [J]. The Journal of Chemical Physics, 1998, 108(13): 5537-5541.
[34] McKay T J, Staromlynska J, Davy J R, et al. Cross sections for excited-state absorption in a Pt:ethynyl complex [J]. Journal of the Optical Society of America B, 2001, 18(3): 358-362.
[35] Price R S, Dubinina G, Wicks G, et al. Polymer monoliths containing two-photon absorbing phenylenevinylene platinum(Ⅱ) acetylide chromophores for optical power limiting [J]. ACS Applied Materials & Interfaces, 2015, 7(20): 10795-10805.
[36] Yao C, Tian Z, Jin D, et al. Platinum(II) acetylide complexes with star-and V-shaped configurations possessing good trade-off between optical transparency and optical power limiting performance [J]. Journal of Materials Chemistry C, 2017, 5(34): 11672-11682.
[37] Glimsdal E, Carlsson M, Kindahl T, et al. Luminescence, singlet oxygen production, and optical power limiting of some diacetylide platinum(Ⅱ) diphosphine complexes [J]. The Journal of Physical Chemistry A, 2010, 114(10): 3431-3442.
[38] Cooper T M, Haley J E, Krein D M, et al. Two-photon spectroscopy of a series of platinum acetylides: Conformation-induced ground-state symmetry breaking [J]. The Journal of Physical Chemistry A, 2017, 121(29): 5442-5449.
[39] Collin J-P, Harriman A, Heitz V, et al. Photoinduced electron- and energy-transfer processes occurring within porphyrin-metal-bisterpyridyl conjugates [J]. Journal of the American Chemical Society, 1994, 116(13): 5679-5690.
[40] Harriman A, Odobel F, Sauvage J-P. Multistep electron transfer between porphyrin modules assembled around a ruthenium center [J]. Journal of the American Chemical Society, 1995, 117(37): 9461-9472.
[41] Dixon I M, Collin J-P, Sauvage J-P, et al. Porphyrinic dyads and triads assembled around iridium(Ⅲ) bis-terpyridine: Photoinduced electron transfer processes [J]. Inorganic Chemistry, 2001, 40(22): 5507-5517.
[42] Fang H, Du C, Qu S, et al. Self-assembly of the[60]fullerene-substituted oligopyridines on Au nanoparticles and the optical nonlinearities of the nanoparticles [J]. Chemical Physics Letters, 2002, 364(3-4): 290-296.
[43] Newkome G R, Cardullo F, Constable E C, et al. Metallomicellanols: incorporation of ruthenium(Ⅱ)–2,2': 6',2″-terpyridine triads into cascade polymers [J]. Journal of the Chemical Society, Chemical Communications, 1993, 11: 925-927.
[44] Newkome G R, He E, Godínez L A, et al. Electroactive metallomacromolecules via tetrabis(2,2':6',2"-terpyridine) ruthenium(Ⅱ) complexes: Dendritic nanonetworks toward constitutional isomers and neutral species without external counterions [J]. Journal of the American Chemical Society, 2000, 122(41): 9993-10006.
[45] Cheung T-C, Cheung K-K, Peng S-M, et al. Photoluminescent cyclometallated diplatinum(Ⅱ,Ⅱ) complexes: photophysical properties and crystal structures of [PtL(PPh3)]ClO4 and[Pt2L2(μ-dppm)][ClO4]2 (HL = 6-phenyl-2,2′-bipyridine, dppm = Ph2PCH2PPh2) [J]. Journal of the Chemical Society, Dalton Transactions, 1996, 8: 1645-1651.
[46] Lai S-W, Chan M C-W, Cheung T-C, et al. Probing d8-d8 interactions in luminescent mono- and binuclear cyclometalated platinum(Ⅱ) complexes of 6-phenyl-2,2'-bipyridines [J]. Inor-ganic Chemistry, 1999, 38(18): 4046-4055.
[47] Lu W, Chan M C W, Cheung K-K, et al. π-π interactions in organometallic systems. crystal structures and spectroscopic properties of luminescent mono-, bi-, and trinuclear trans-cyclometalated platinum(Ⅱ) complexes derived from 2,6-diphenylpyridine [J]. Organometallics, 2001, 20(12): 2477-2486.
[48] Lu W, Chan M C W, Zhu N, et al. Structural and spectroscopic studies on Pt···Pt and π-π interactions in luminescent multinuclear cyclometalated platinum(Ⅱ) homologues tethered by oligophosphine auxiliaries [J]. Journal of the American Chemical Society, 2004, 126(24): 7639-7651.
[49] Wang Y, Yang Q, Wu L, et al. Synthesis and luminescent properties of an acetylide‐bridged dinuclear platinum(Ⅱ) terpyridyl complex [J]. Chinese Journal of Chemistry, 2004, 22(1): 114-116.
[50] Sun W, Wu Z, Yang Q, et al. Reverse saturable absorption of platinum ter/bipyridyl polyphenylacetylide complexes [J]. Applied Physics Letters, 2003, 82(6): 850-852.
[51] Sun W , Guo F. Excited state absorption and optical limiting of platinum(Ⅱ) 4'-arylterpyridyl acetylide complexes [J]. Chinese Optics Letters, 2005, 3(S): S34-S37.
[52] Guo F, Sun W, Liu Y, et al. Synthesis, photophysics, and optical limiting of platinum(Ⅱ) 4'-tolylterpyridyl arylacetylide complexes [J]. Inorganic Chemistry, 2005, 44(11): 4055-4065.
[53] Guo F, Sun W. Photophysics and optical limiting of platinum(Ⅱ) 4'-arylterpyridyl phenylacetylide complexes [J]. The Journal of Physical Chemistry B, 2006, 110(30): 15029-15036.
[54] Sun W, Zhu H, Barron P M. Binuclear cyclometalated platinum(Ⅱ) 4,6-Diphenyl-2,2'-bipyridine complexes: Interesting photoluminescent and optical limiting materialsng materials [J]. Chemistry of Materials, 2006, 18(10): 2602-2610.
[55] Shao P, Sun W. Trinuclear platinum(Ⅱ) 4,6-diphenyl-2,2'-bipyridyl complex with bis(diphenylphosphinomethyl) phenylphosphine auxiliary ligand: synthesis, structural characterization, and photophysics [J]. Inorganic Chemistry, 2007, 46(21): 8603-8612.
[56] Ji Z, Li Y, Sun W. 4′-(5′′′-R-pyrimidyl)-2,2′:6′,2″-terpyridyl (R = H, OEt, Ph, Cl, CN) platinum(Ⅱ) phenylacetylide complexes: Synthesis and photophysics [J]. Inorganic Chemistry, 2008, 47(17): 7599-7607.
[57] Pritchett T M, Sun W , Guo F, et al. Excited-state absorption in a terpyridyl platinum(Ⅱ) pentynyl complex [J]. Optics Letters, 2008, 33(10): 1053-1055.
[58] Shao P, Li Y, Sun W. Cyclometalated platinum(Ⅱ) complex with strong and broadband nonlinear optical response [J]. The Journal of Physical Chemistry A, 2008, 112(6): 1172-1179.
[59] Shao P, Li Y, Sun W. Platinum(Ⅱ) 2,4-Di(2′-pyridyl)-6-(p-tolyl)-1,3,5-triazine complexes: Synthesis and photophysics [J]. Organometallics, 2008, 27(12): 2743-2749.
[60] Li Y, Pritchett T, Shao P, et al. Excited-state absorption of mono-, di- and tri-nuclear cyclometalated platinum 4,6-diphenyl-2,2′-bipyridyl complexes [J]. Journal of Organometallic Chemistry, 2009, 694(23): 3688-3691.
[61] Ji Z, Azenkeng A, Hoffmann M, et al. Synthesis and photophysics of 4′-R-2,2′;6′,2″-terpyridyl (R = Cl, CN, N(CH3)2) platinum(Ⅱ) phenylacetylide complexestinum(Ⅱ) phenylacetylide complexes [J]. Dalton Trans, 2009, 37: 7725-7733.
[62] Shao P, Li Y, Azenkeng A, et al. Influence of alkoxyl substituent on 4,6-diphenyl-2,2′-bipyridine ligand on photophysics of cyclo-metalated platinum(Ⅱ) complexes: Admixing intraligand charge transfer character in low-lying excited states [J]. Inorganic Chemistry, 2008, 48(6): 2407-2419.
[63] Sun W, Li Y, Pritchett T, et al. Excited-state absorption of 4′-(5′′′-R-pyrimidyl)-2,2′:6′,2″-terpyridyl platinum(Ⅱ) phenylacetylide complexes [J]. Nonlinear Optics, Quantum Optics: Concepts in Modern Optics, 2010, 40(1): 163-174.
[64] Yi J, Zhang B, Shao P, et al. Synthesis and photophysics of platinum(Ⅱ) 6-Phenyl-4-(9,9-dihexylfluoren-2-yl)-2,2 ′-bipyridine complexes with phenothiazinyl acetylide ligand [J]. The Journal of Physical Chemistry A, 2010, 114(26): 7055-7062.
[65] Liu R, Li Y, Li Y, et al. Photophysics and nonlinear absorption of cyclometalated 4,6-diphenyl-2,2′-bipyridyl platinum(Ⅱ) com-plexes with different acetylide ligands [J]. The Journal of Physical Chemistry A, 2010, 114(48): 12639-12645.
[66] Shao P, Li Y, Yi J, et al. Cyclometalated platinum(Ⅱ) 6-phenyl-4-(9,9-dihexylfluoren-2-yl)-2,2′-bipyridine complexes: Synthesis, photophysics, and nonlinear absorption [J]. Inorganic Chemistry, 2010, 49(10): 4507-4517.
[67] Ji Z, Li Y, Pritchett T M, et al. One-photon photophysics and two-photon absorption of 4-[9,9-Di(2-ethylhexyl)-7-diphenylaminofluoren-2-yl]-2,2′: 6′,2″-terpyridine and their platinum chloride complexes [J]. Chemistry-A European Journal, 2011, 17(12): 2479-2491.
[68] Zhang B, Li Y, Liu R, et al. Synthesis, structural characterization, photophysics, and broadband nonlinear absorption of a platinum(Ⅱ) complex with the 6-(7-benzothiazol-2′-yl-9,9-diethyl-9 H-fluoren-2-yl)-2,2′-bipyridinyl Ligand [J]. Chemistry - A European Journal, 2012, 18(25): 4593-4606.
[69] Li Z, Sun W. Synthesis, photophysics, and reverse saturable absorption of platinum complexes bearing extended π-conjugated C^N^N ligands [J]. Dalton Transactions, 2013, 42(38): 14021-14029.
[70] Li Z, Badaeva E, Ugrinov A, et al. Platinum chloride complexes containing 6-[9,9-Di(2-ethylhexyl)-7-R-9H-fluoren-2-yl]-2,2′-bi-pyridine ligand (R = NO2, CHO, benzothiazol-2-yl, n-Bu, carbazol-9-yl, NPh2): Tunable photophysics and reverse saturable absor-ption [J]. Inorganic Chemistry, 2013, 52(13): 7578-7592.
[71] Liu X, Sun W. Platinum(Ⅱ) complexes bearing 2-(9,9-dihexadecyl-7-R-fluoren-2-yl)-1,10-phenanthroline ligands: Synthesis, photophysics and reverse saturable absorption [J]. European Journal of Inorganic Chemistry, 2013, 2013(27): 4732-4742.
[72] Zhang B, Li Y, Liu R, et al. Extending the bandwidth of reverse saturable absorption in platinum complexes using two-photon-initiated excited-state absorption [J]. ACS Applied Materials & Interfaces, 2013, 5(3): 565-572.
[73] Shi P, Coe B J, Sánchez S, et al. Uniting ruthenium(Ⅱ) and platinum(Ⅱ) polypyridine centers in heteropolymetallic complexes giving strong two-photon absorption [J]. Inorganic Chemistry, 2015, 54(23): 11450-11456.
[74] Zhao T, Liu R, Shi H, et al. Synthesis, tunable photophysics and nonlinear absorption of terpyridyl Pt(Ⅱ) complexes bearing different acetylide ligands [J]. Dyes and Pigments, 2016, 126: 165-172.
[75] Fang B, Zhu Y, Hu L, et al. Series of C^N^C cyclometalated Pt(Ⅱ) complexes: Synthesis, crystal structures, and nonlinear optical properties in the near-infrared region [J]. Inorganic Chemistry, 2018, 57(22): 14134-14143.
[76] Po C, Tao C-H, Li K-F, et al. Design, synthesis, luminescence and non-linear optical properties of 1,3,5-triethynylbenzene-based alkynylplatinum(Ⅱ) terpyridine complexes [J]. Journal of Organometallic Chemistry, 2019, 881: 13-18.
[77] Po C, Tao C-H, Li K-F, et al. Design, luminescence and non-linear optical properties of truxene-containing alkynylplatinum(Ⅱ) terpyridine complexes [J]. Inorganica Chimica Acta, 2019, 488: 214-218.