[1] Wang Yuye, Chen Linyu, Xu Degang, et al. Advances in terahertz three-dimensional imaging techniques [J]. Chinese Optics, 2019, 12(1): 1-18. (in Chinese) doi:  10.3788/co.20191201.0001
[2] Liu Xinyuan, Zeng Haomin, Tian Xin, et al. Transmission simulation and safety analysis of terahertz radiation in skin [J]. Optics and Precision Engineering, 2021, 29(5): 999-1007. (in Chinese)
[3] He Jingwen, Dong Tao, Zhang Yan. Development of metasurfaces for wavefront modulation interahertz waveband [J]. Infrared and Laser Engineering, 2020, 49(9): 20201033. (in Chinese)
[4] Gao Xiang, Liu Xiaoqing, Dai Zijie, et al. Integrated terahertz confocal imaging system based on THz waveguides [J]. Infrared and Laser Engineering, 2019, 48(S2): S219001. (in Chinese)
[5] Li Jing, Zhang Wen, Miao Wei, et al. Development of ultra high sensitivity superconducting THz detectors [J]. Chinese Optics, 2017, 10(1): 112-130. (in Chinese)
[6] Xie Lijuan, Yao Yang, Ying Yibin. The application of terahertz spectroscopy to protein detection: a review [J]. Applied Spectroscopy Reviews, 2014, 49(6): 448-461.
[7] Lian Yuxuan, Feng Wei, Ding Qingfeng, et al. 340 GHz wireless communication receiving front-ends based on AlGaN/GaN HEMT terahertz detectors [J]. Infrared and Laser Engineerin, 2021, 50(5): 20210202. (in Chinese)
[8] Liu Zewen, Xuan Yun, Lei Xiaofeng, et al. Design and measurement of RF-MEMS CPW on HRS [J]. Optics and Precision Engineering, 2005, 13(2): 158-164. (in Chinese)
[9] Meng Fanyi, Wu Qun, Fu Jiahui, et al. Transmission characteristics of a rectangular waveguide filled with anisotropic metamaterial [J]. Acta Physica Sinica, 2008, 57(9): 5476-5484. (in Chinese) doi:  10.7498/aps.57.5476
[10] Li Gang. Researches on design and simulation technology of waveguide-to-microstrip transitions [D]. Xi ’an: Xidian University, 2008. (in Chinese)
[11] Dong Yunfeng, Johansen T K, Zhurbenko V. Rectangular waveguide-to-coplanar waveguide transitions at U-band using e-plane probe and wire bonding[C]//2016 46th European Microwave Conference, 2016: 5-8.
[12] Dong Yunfeng, Zhurbenko V, Hanberg P J, et al. A D-band rectangular waveguide-to-coplanar waveguide transition using wire bonding probe [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2019, 40(1): 63-79. doi:  10.1007/s10762-018-0551-x
[13] Dong Yunfeng, Zhurbenko V, Hanberg P J, et al. A D-Band Rectangular Waveguide-to-Coplanar Waveguide Transition Using Metal Ridge[C]//2019 IEEE/MTT-S International Microwave Symposium, 2019: 1050-1053.
[14] Dong Yunfeng, Johansen T K, Zhurbenko V, et al. A rectangular waveguide-to-coplanar waveguide transition at D-band using wideband patch antenna[C]//2018 48th European Microwave Conference, 2018: 1045-1048.
[15] Tang Wenxuan, Wang Jiangpeng, Yan Xiaotian, et al. Broadband and hzigh-efficiency excitation of spoof surface plasmon polaritons through rectangular waveguide [J]. Frontiers in Physics, 2020, 8(410): 582692.
[16] Aliakbarian H, Radiom S, Tavakol V, et al. Fully micromachined W-band rectangular waveguide to grounded coplanar waveguide transition [J]. IET Microwaves, Antennas & Propagation, 2012, 6(5): 533-540.
[17] Southworth G C. Principles and applications of waveguide transmission [J]. Bell System Technical Journal, 1950, 29(3): 295-342. doi:  10.1002/j.1538-7305.1950.tb02348.x
[18] Zhou Yue, Zhang Guofeng. Design method of chebyshev transformer [J]. College Physics, 2012, 31(11): 29-31. (in Chinese)