[1] Lin Y, Lee K H, Bao S, et al. High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform[J]. Photonics Research, 2017, 5(6):702-709.
[2] Dushaq G, Nayfeh A, Rasras M. Metal-germanium-metal photodetector grown on silicon using low temperature RF-PECVD[J]. Optics Express, 2017, 25(25):32110-32119.
[3] Luo G, Yang T H, Chang E Y, et al. Growth of high-quality Ge epitaxial layers on Si (100)[J]. Japanese Journal of Applied Physics, 2003, 42(5B):L517.
[4] Wietler T F, Bugiel E, Hofmann K R. Surfactant-mediated epitaxy of relaxed low-doped Ge films on Si (001) with low defect densities[J]. Applied Physics Letters, 2005, 87(18):182102.
[5] Park J S, Bai J, Curtin M, et al. Defect reduction of selective Ge epitaxy in trenches on Si (001) substrates using aspect ratio trapping[J]. Applied Physics Letters, 2007, 90(5):052113.
[6] Chen D, Xue Z, Wei X, et al. Ultralow temperature ramping rate of LT to HT for the growth of high quality Ge epilayer on Si (100) by RPCVD[J]. Applied Surface Science, 2014, 299:1-5
[7] Huang Z, Mao Y, Yi X, et al. Impacts of excimer laser annealing on Ge epilayer on Si[J]. Applied Physics A, 2017, 123(2):148.
[8] Ke S, Ye Y, Wu J, et al. Interface characteristics of different bonded structures fabricated by low-temperature a-Ge wafer bonding and the application of wafer-bonded Ge/Si photoelectric device[J]. Journal of Materials Science, 2019, 54(3):2406-2416.
[9] Sett S, Ghatak A, Sharma D, et al. Broad Band Single Germanium Nanowire Photodetectors with Surface Oxide-Controlled High Optical Gain[J]. The Journal of Physical Chemistry C, 2018, 122(15):8564-8572.
[10] Huang S, Lu W, Li C, et al. A CMOS-compatible approach to fabricate an ultra-thin germanium-on-insulator with large tensile strain for Si-based light emission[J]. Optics Express, 2013, 21(1):640-646.
[11] Lin G, Liang D, Wang J, et al. Strain evolution in SiGe-on-insulator fabricated by a modified germanium condensation technique with gradually reduced condensation temperature[J]. Materials Science in Semiconductor Processing, 2019, 97:56-61.
[12] Zhang L, Hong H, Wang Y, et al. Formation of high-Sn content polycrystalline GeSn films by pulsed laser annealing on co-sputtered amorphous GeSn on Ge substrate[J]. Chinese Physics B, 2017(11):60.
[13] Wang Y, Zhang L, Huang Z, et al. Crystallization of GeSn thin films deposited on Ge (100) substrate by magnetron sputtering[J]. Materials Science in Semiconductor Processing, 2018, 88:28-34.
[14] Chen N, Lin G, Zhang L, et al. Low-temperature formation of GeSn nanocrystallite thin films by sputtering Ge on self-assembled Sn nanodots on SiO2/Si substrate[J]. Japanese Journal of Applied Physics, 2017, 56(5):050301.
[15] Zhang L, Hong H, Li C, et al. High-Sn fraction GeSn quantum dots for Si-based light source at 1.55μm[J]. Applied Physics Express, 2019, 12(5):055504.
[16] Wang C, Li C, Lin G, et al. Germanium n+/p shallow junction with record rectification ratio formed by low-temperature preannealing and excimer laser annealing[J]. IEEE Transactions on Electron Devices, 2014, 61(9):3060-3065.
[17] Wang C, Li C, Wei J, et al. High-performance Ge pn photodiode achieved with preannealing and excimer laser annealing[J]. IEEE Photonics Technology Letters, 2015, 27(14):1485-1488.
[18] Mathiot D, Lachiq A, Slaoui A, et al. Phosphorus diffusion from a spin-on doped glass (SOD) source during rapid thermal annealing[J]. Materials Science in Semiconductor Processing, 1998, 1(3-4):231-236.
[19] Boldrini V, Carturan S, Maggioni G, et al. Optimal process parameters for phosphorus spin-on-doping of germanium[J]. Applied Surface Science, 2017, 392(1):1173-1180.
[20] Liang D, Lin G, Huang D, et al. Spin-on doping of phosphorus on Ge with a 9 nm amorphous Si capping layer to achieve n+/p shallow junctions through rapid thermal annealing[J]. Journal of Physics D:Applied Physics, 2019, 52(19):195101.
[21] Wu Z, Huang W, Li C, et al. Modulation of Schottky barrier height of metal/TaN/n-Ge junctions by varying TaN thickness[J]. IEEE Trans Electron Devices, 2012, 59(9):1328.
[22] Wu H, Huang W, Lu W, et al. Ohmic contact to n-type Ge with compositional Ti nitride[J]. Applied Surface Science, 2013, 284:877-880.
[23] Wu H, Wang C, Wei J, et al. Ohmic Contact to n-Type Ge with Compositional W Nitride[J]. IEEE Electron Device Letters, 2014, 35(12):1188-1190.
[24] Liu H, Wang P, Qi D, et al. Ohmic contact formation of metal/amorphous-Ge/n-Ge junctions with an anomalous modulation of Schottky barrier height[J]. Applied Physics Letters, 2014, 105(19):192103.
[25] Lai S, Mao D, Ruan Y, et al. Impact of nitrogen plasma passivation on the Al/n-Ge contact[J]. Materials Science and Engineering:B, 2016, 211:178-184.
[26] Huang Z, Li C, Lin G, et al. Suppressing the formation of GeOx by doping Sn into Ge to modulate the Schottky barrier height of metal/n-Ge contact[J]. Applied Physics Express, 2016, 9(2):021301.
[27] Huang Z, Mao Y, Lin G, et al. Impacts of ITO interlayer thickness on metal/n-Ge contacts[J]. Materials Science and Engineering:B, 2017, 224:103-109.
[28] Huang Z, Mao Y, Chang A, et al. Low-dark-current, high-responsivity indium-doped tin oxide/Au/n-Ge Schottky photodetectors for broadband 800-1650 nm detection[J]. Applied Physics Express, 2018, 11(10):102203.