[1] Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators [J]. Science, 2018, 361(6402): eaan8083. doi:  10.1126/science.aan8083
[2] Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs [J]. Nature Photonics, 2019, 13(3): 158-169. doi:  10.1038/s41566-019-0358-x
[3] Guo H, Karpov M, Lucas E, et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators [J]. Nature Physics, 2017, 13(1): 94-102. doi:  10.1038/nphys3893
[4] Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs [J]. Science, 2011, 332(6029): 555-559. doi:  10.1126/science.1193968
[5] Hargrove L E, Fork R L, Pollack M A. Locking of He-Ne laser modes induced by synchronous intracavity modulation [J]. Applied Physics Letters, 1964, 5: 4. doi:  10.1063/1.1754025
[6] Hall J L. Nobel lecture: Defining and measuring optical frequencies [J]. Reviews of Modern Physics, 2006, 78(4): 1279-1295. doi:  10.1103/RevModPhys.78.1279
[7] Hänsch T W. Nobel lecture: Passion for precision [J]. Reviews of Modern Physics, 2006, 78(4): 1297-1309. doi:  10.1103/RevModPhys.78.1297
[8] Diddams S A. The evolving optical frequency comb [invited] [J]. Journal of the Optical Society of America B, 2010, 27(11): B51-B62. doi:  10.1364/JOSAB.27.000B51
[9] Diddams S A, Vahala K, Udem T. Optical frequency combs: Coherently uniting the electromagnetic spectrum [J]. Science, 2020, 369(6501): eaay3676. doi:  10.1126/science.aay3676
[10] Del’Haye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator [J]. Nature, 2007, 450(7173): 1214-1217. doi:  10.1038/nature06401
[11] Picqué N, Hänsch T W. Frequency comb spectroscopy [J]. Nature Photonics, 2019, 13(3): 146-157. doi:  10.1038/s41566-018-0347-5
[12] Ycas G, Giorgetta F R, Baumann E, et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm [J]. Nature Photonics, 2018, 12(4): 202-208. doi:  10.1038/s41566-018-0114-7
[13] Coddington I, Newbury N, Swann W. Dual-comb spectroscopy [J]. Optica, 2016, 3(4): 414-426. doi:  10.1364/OPTICA.3.000414
[14] Millot G, Pitois S, Yan M, et al. Frequency-agile dual-comb spectroscopy [J]. Nature Photonics, 2016, 10(1): 27-30. doi:  10.1038/nphoton.2015.250
[15] Suh M G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy [J]. Science, 2016, 354(6312): 600-603. doi:  10.1126/science.aah6516
[16] Yasui T, Yokoyama S, Inaba H, et al. Terahertz frequency metrology based on frequency comb [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 191-201. doi:  10.1109/JSTQE.2010.2047099
[17] Ye J, Schnatz H, Hollberg L W. Optical frequency combs: From frequency metrology to optical phase control [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(4): 1041-1058. doi:  10.1109/JSTQE.2003.819109
[18] Yoshii K, Nomura J, Taguchi K, et al. Optical frequency metrology study on nonlinear processes in a waveguide device for ultrabroadband comb generation [J]. Physical Review Applied, 2019, 11(5): 054031. doi:  10.1103/PhysRevApplied.11.054031
[19] Suh M G, Vahala K J. Soliton microcomb range measurement [J]. Science, 2018, 359(6378): 884-887. doi:  10.1126/science.aao1968
[20] Trocha P, Karpov M, Ganin D, et al. Ultrafast optical ranging using microresonator soliton frequency combs [J]. Science, 2018, 359(6378): 887-891. doi:  10.1126/science.aao3924
[21] Marin-Palomo P, Kemal J N, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications [J]. Nature, 2017, 546(7657): 274-279. doi:  10.1038/nature22387
[22] Corcoran B, Tan M X, Xu X Y, et al. Ultra-dense optical data transmission over standard fibre with a single chip source [J]. Nature Communications, 2020, 11(1): 7. doi:  10.1038/s41467-019-13787-x
[23] Hu H, Oxenlowe L K. Chip-based optical frequency combs for high-capacity optical communications [J]. Nanophotonics, 2021, 10(5): 1367-1385. doi:  10.1515/nanoph-2020-0561
[24] Liu J Q, Lucas E, Raja A S, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs [J]. Nature Photonics, 2020, 14(8): 486-491. doi:  10.1038/s41566-020-0617-x
[25] Rieker G B, Giorgetta F R, Swann W C, et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths [J]. Optica, 2014, 1(5): 290-298. doi:  10.1364/OPTICA.1.000290
[26] Zhao S X, Liu Q W, He Z Y. Multi-tone Pound-Drever-Hall technique for high-resolution multiplexed Fabry-Perot resonator sensors [J]. Journal of Lightwave Technology, 2020, 38(22): 6379-6384. doi:  10.1109/JLT.2020.3011575
[27] Muraviev A V, Smolski V O, Loparo Z E, et al. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs [J]. Nature Photonics, 2018, 12(4): 209-214. doi:  10.1038/s41566-018-0135-2
[28] Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications [J]. Communications Physics, 2019, 2(1): 153. doi:  10.1038/s42005-019-0249-y
[29] Kues M, Reimer C, Lukens J M, et al. Quantum optical microcombs [J]. Nature Photonics, 2019, 13(3): 170-179. doi:  10.1038/s41566-019-0363-0
[30] Kim J, Song Y J. Ultralow-noise mode-locked fiber lasers and frequency combs: Principles, status, and applications [J]. Advances in Optics and Photonics, 2016, 8(3): 465-540. doi:  10.1364/AOP.8.000465
[31] Herr T, Brasch V, Jost J D, et al. Temporal solitons in optical microresonators [J]. Nature Photonics, 2013, 8(2): 145-152.
[32] Brasch V, Geiselmann M, Herr T, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation [J]. Science, 2016, 351(6271): 357-360. doi:  10.1126/science.aad4811
[33] Stern B, Ji X C, Okawachi Y, et al. Battery-operated integrated frequency comb generator [J]. Nature, 2018, 562(7727): 401-405. doi:  10.1038/s41586-018-0598-9
[34] Cole D C, Lamb E S, Del'Haye P, et al. Soliton crystals in Kerr resonators [J]. Nature Photonics, 2017, 11(10): 671-676. doi:  10.1038/s41566-017-0009-z
[35] Sich M, Krizhanovskii D N, Skolnick M S, et al. Observation of bright polariton solitons in a semiconductor microcavity [J]. Nature Photonics, 2012, 6(1): 50-55. doi:  10.1038/nphoton.2011.267
[36] Xue X X, Xuan Y, Liu Y, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators [J]. Nature Photonics, 2015, 9(9): 594-600. doi:  10.1038/nphoton.2015.137
[37] Herr T, Hartinger K, Riemensberger J, et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators [J]. Nature Photonics, 2012, 6(7): 480-487. doi:  10.1038/nphoton.2012.127
[38] Godey C, Balakireva I V, Coillet A, et al. Stability analysis of the spatiotemporal lugiato-lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes [J]. Physical Review A, 2014, 89(6): 063814. doi:  10.1103/PhysRevA.89.063814
[39] Wang W, Wang L, Zhang W. Advances in soliton microcomb generation [J]. Advanced Photonics, 2020, 2(3): 034001.
[40] Herr T, Brasch V, Jost J D, et al. Temporal solitons in optical microresonators [J]. Nature Photonics, 2014, 8(2): 145-152. doi:  10.1038/nphoton.2013.343
[41] Lundberg L, Karlsson M, Lorences-Riesgo A, et al. Frequency comb-based WDM transmission systems enabling joint signal processing [J]. Applied Sciences, 2018, 8(5): 718. doi:  10.3390/app8050718
[42] Rueda A, Sedlmeir F, Kumari M, et al. Resonant electro-optic frequency comb [J]. Nature, 2019, 568(7752): 378-381. doi:  10.1038/s41586-019-1110-x
[43] Chang L, Liu S, Bowers J E. Integrated optical frequency comb technologies [J]. Nature Photonics, 2022, 16(2): 95-108. doi:  10.1038/s41566-021-00945-1
[44] Buscaino B, Zhang M, Loncar M, et al. Design of efficient resonator-enhanced electro-optic frequency comb generators [J]. Journal of Lightwave Technology, 2020, 38(6): 1400-1413. doi:  10.1109/JLT.2020.2973884
[45] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages [J]. Nature, 2018, 562(7725): 101-104. doi:  10.1038/s41586-018-0551-y
[46] Xu M Y, He M B, Zhu Y T, et al. Flat optical frequency comb generator based on integrated lithium niobate modulators [J]. Journal of Lightwave Technology, 2022, 40(2): 339-345. doi:  10.1109/JLT.2021.3100254
[47] Ren T H, Zhang M, Wang C, et al. An integrated low-voltage broadband lithium niobate phase modulator [J]. IEEE Photonics Technology Letters, 2019, 31(11): 889-892. doi:  10.1109/LPT.2019.2911876
[48] Andriolli N, Cassese T, Chiesa M, et al. Photonic integrated fully tunable comb generator cascading optical modulators [J]. Journal of Lightwave Technology, 2018, 36(23): 5685-5689. doi:  10.1109/JLT.2018.2877020
[49] Slavik R, Farwell S G, Wale M J, et al. Compact optical comb generator using InP tunable laser and push-pull modulator [J]. IEEE Photonics Technology Letters, 2015, 27(2): 217-220. doi:  10.1109/LPT.2014.2365259
[50] Yokota N, Yasaka H. Operation strategy of InP Mach-Zehnder modulators for flat optical frequency comb generation [J]. IEEE Journal of Quantum Electronics, 2016, 52(8): 1-7.
[51] Nagarjun K P, Jeyaselvan V, Selvaraja S K, et al. Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators [J]. Opt Express, 2018, 26(8): 10744-10753. doi:  10.1364/OE.26.010744
[52] Nagarjun K P, Raj P, Jeyaselvan V, et al. Microwave power induced resonance shifting of silicon ring modulators for continuously tunable, bandwidth scaled frequency combs [J]. Opt Express, 2020, 28(9): 13032-13042. doi:  10.1364/OE.386810
[53] Liu S, Wu K, Zhou L, et al. Repetition-frequency-doubled transform-limited optical pulse generation based on silicon modulators [J]. Journal of Lightwave Technology, 2020, 38(22): 6299-6311. doi:  10.1109/JLT.2020.3010993
[54] Pockels F. Ueber den einfluss elastischer deformationen, speciell einseitigen druckes, auf das optische verhalten krystallinischer körper [J]. Annalen der Physik, 1889, 273(5): 144-172. doi:  10.1002/andp.18892730509
[55] Parriaux A, Hammani K, Millot G. Electro-optic frequency combs [J]. Advances in Optics and Photonics, 2020, 12(1): 223-287. doi:  10.1364/AOP.382052
[56] Imran M, Anandarajah P M, Kaszubowska-Anandarajah A, et al. A survey of optical carrier generation techniques for terabit capacity elastic optical networks [J]. IEEE Communications Surveys & Tutorials, 2018, 20(1): 211-263.
[57] Pile B, Taylor G. Small-signal analysis of microring resonator modulators [J]. Optics Express, 2014, 22(12): 14913-14928. doi:  10.1364/OE.22.014913
[58] Sacher W D, Green W M J, Gill D M, et al. Binary phase-shift keying by coupling modulation of microrings [J]. Optics Express, 2014, 22(17): 20252-20259. doi:  10.1364/OE.22.020252
[59] Qi Y F, Li Y. Integrated lithium niobate photonics [J]. Nanophotonics, 2020, 9(6): 1287-1320. doi:  10.1515/nanoph-2020-0013
[60] Kourogi M, Nakagawa K, Ohtsu M. Wide-span optical frequency comb generator for accurate optical frequency difference measurement [J]. IEEE Journal of Quantum Electronics, 1993, 29(10): 2693-2701. doi:  10.1109/3.250392
[61] Brothers L R, Wong N C. Dispersion compensation for terahertz optical frequency comb generation [J]. Optics Letters, 1997, 22(13): 1015-1017. doi:  10.1364/OL.22.001015
[62] Bruel M. Silicon on insulator material technology [J]. Electronics Letters, 1995, 31(14): 1201-1202. doi:  10.1049/el:19950805
[63] Levy M, Osgood R M, Liu R, et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing [J]. Applied Physics Letters, 1998, 73(16): 2293-2295. doi:  10.1063/1.121801
[64] Poberaj G, Hu H, Sohler W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices [J]. Laser & Photonics Reviews, 2012, 6(4): 488-503.
[65] Lin J, Bo F, Cheng Y, et al. Advances in on-chip photonic devices based on lithium niobate on insulator [J]. Photonics Research, 2020, 8(12): 1910-1936. doi:  10.1364/PRJ.395305
[66] Zhu D, Shao L B, Yu M J, et al. Integrated photonics on thin-film lithium niobate [J]. Advances in Optics and Photonics, 2021, 13(2): 242-352. doi:  10.1364/AOP.411024
[67] Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator [J]. Nature, 2019, 568(7752): 373-377. doi:  10.1038/s41586-019-1008-7
[68] Xu M, He M, Zhu Y, et al. Integrated thin film lithium niobate Fabry–Perot modulator [invited] [J]. Chinese Optics Letters, 2021, 19(6): 060003. doi:  10.3788/COL202119.060003
[69] He J, Li Y. Design of on-chip mid-IR frequency comb with ultra-low power pump in near-IR [J]. Opt Express, 2020, 28(21): 30771-30783. doi:  10.1364/OE.401881
[70] Zafar F, Iqbal A. Indium phosphide nanowires and their applications in optoelectronic devices [J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 2016, 472(2187): 18.
[71] Tol van der J J G M, Jiao Y, Shen L, et al. Indium phosphide integrated photonics in membranes [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(1): 1-9.
[72] Wang Z, Tian B, Pantouvaki M, et al. Room-temperature InP distributed feedback laser array directly grown on silicon [J]. Nature Photonics, 2015, 9(12): 837-842. doi:  10.1038/nphoton.2015.199
[73] Shen L, Jiao Y, Yao W, et al. High-Bandwidth uni-traveling carrier waveguide photodetector on an InP-membrane-on-silicon platform [J]. Optics Express, 2016, 24(8): 8290-8301. doi:  10.1364/OE.24.008290
[74] Xue Y, Han Y, Tong Y, et al. High-performance III-V photodetectors on a monolithic InP/SOI platform [J]. Optica, 2021, 8(9): 1204-1209. doi:  10.1364/OPTICA.431357
[75] Nguyen N L K, Nguyen D P, Stameroff A N, et al. A 1-160-GHz InP distributed amplifier using 3-D interdigital capacitors [J]. IEEE Microwave and Wireless Components Letters, 2020, 30(5): 492-495. doi:  10.1109/LMWC.2020.2980280
[76] Liu T, Pagliano F, van Veldhoven R, et al. Low-voltage MEMS optical phase modulators and switches on a indium phosphide membrane on silicon [J]. Applied Physics Letters, 2019, 115(25): 251104. doi:  10.1063/1.5128212
[77] Kashi A A, Tol van der J J G M, Williams K A, et al. Electro-optic slot waveguide phase modulator on the InP membrane on silicon platform [J]. IEEE Journal of Quantum Electronics, 2021, 57(1): 1-10.
[78] Betancur-Perez A, Martin-Mateos P, Dios C, et al. Design of a multipurpose photonic chip architecture for THz Dual-Comb spectrometers [J]. Sensors, 2020, 20(21): 6089. doi:  10.3390/s20216089
[79] Liu D P, Tang J, Meng Y, et al. Ultra-low Vpp and high-modulation-depth InP-based electro-optic microring modulator [J]. Journal of Semiconductors, 2021, 42(8): 082301. doi:  10.1088/1674-4926/42/8/082301
[80] Bontempi F, Andriolli N, Scotti F, et al. Comb line multiplication in an InP integrated photonic circuit based on cascaded modulators [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1-7.
[81] Jalali B, Fathpour S. Silicon photonics [J]. Journal of Lightwave Technology, 2006, 24(12): 4600-4615. doi:  10.1109/JLT.2006.885782
[82] Bruel M, Aspar B, Auberton-Herve A J. Smart-cut: A new silicon on insulator material technology based on hydrogen implantation and wafer bonding [J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1997, 36(3B): 1636-1641.
[83] Aspar B, Moriceau H, Jalaguier E, et al. The generic nature of the smart-cut® process for thin film transfer [J]. Journal of Electronic Materials, 2001, 30(7): 834-840. doi:  10.1007/s11664-001-0067-2
[84] Thomson D, Zilkie A, Bowers J E, et al. Roadmap on silicon photonics [J]. Journal of Optics, 2016, 18(7): 073003. doi:  10.1088/2040-8978/18/7/073003
[85] Bogaerts W, Chrostowski L. Silicon photonics circuit design: Methods, tools and challenges [J]. Laser & Photonics Reviews, 2018, 12(4): 1700237.
[86] Arakawa Y, Nakamura T, Urino Y, et al. Silicon photonics for next generation system integration platform [J]. IEEE Communications Magazine, 2013, 51(3): 72-77. doi:  10.1109/MCOM.2013.6476868
[87] Marchetti R, Lacava C, Carroll L, et al. Coupling strategies for silicon photonics integrated chips [invited] [J]. Photonics Research, 2019, 7(2): 201-239. doi:  10.1364/PRJ.7.000201
[88] Lin H, Luo Z, Gu T, et al. Mid-infrared integrated photonics on silicon: A perspective [J]. Nanophotonics, 2018, 7(2): 393-420.
[89] Siew S Y, Li B, Gao F, et al. Review of silicon photonics technology and platform development [J]. Journal of Lightwave Technology, 2021, 39(13): 4374-4389. doi:  10.1109/JLT.2021.3066203
[90] Lee C H, Chang R K, Bloembergen N. Nonlinear electroreflectance in silicon and silver [J]. Physical Review Letters, 1967, 18(5): 167-170. doi:  10.1103/PhysRevLett.18.167
[91] Chen Z, Zhao J, Zhang Y, et al. Pockel’s effect and optical rectification in (111)-cut near-intrinsic silicon crystals [J]. Applied Physics Letters, 2008, 92(25): 251111. doi:  10.1063/1.2952462
[92] Wu X, Xu K, Zhou W, et al. Scalable ultra-wideband pulse generation based on silicon photonic integrated circuits [J]. IEEE Photonics Technology Letters, 2017, 29(21): 1896-1899. doi:  10.1109/LPT.2017.2755589
[93] Deniel L, Weckenmann E, Pérez Galacho D, et al. Silicon photonics phase and intensity modulators for flat frequency comb generation [J]. Photonics Research, 2021, 9(10): 2068-2076. doi:  10.1364/PRJ.431282
[94] Wang Z, Ma M, Sun H, et al. Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators [J]. IEEE Journal of Quantum Electronics, 2019, 55(6): 1-6. doi:  10.1109/JQE.2019.2948152
[95] Lipson M. Compact electro-optic modulators on a silicon chip [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1520-1526. doi:  10.1109/JSTQE.2006.885341
[96] Xu Y, Lin J, Dube-Demers R, et al. Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators [J]. Opt Lett, 2018, 43(7): 1554-1557. doi:  10.1364/OL.43.001554
[97] Liu S, Wu K, Zhou L, et al. Microwave pulse generation with a silicon Dual-Parallel modulator [J]. Journal of Lightwave Technology, 2020, 38(8): 2134-2143. doi:  10.1109/JLT.2020.2964102
[98] Deniel L, Weckenmann E, Pérez Galacho D, et al. Frequency-tuning dual-comb spectroscopy using silicon mach-zehnder modulators [J]. Optics Express, 2020, 28(8): 10888-10898. doi:  10.1364/OE.390041
[99] Demirtzioglou I, Lacava C, Bottrill K R H, et al. Frequency comb generation in a silicon ring resonator modulator [J]. Opt Express, 2018, 26(2): 790-796. doi:  10.1364/OE.26.000790
[100] Khalil M, Maram R, Naghdi B, et al. Electro-optic frequency comb generation using cascaded silicon microring modulators [C]// Proceedings of the OSA Advanced Photonics Congress (AP), 2020.
[101] Kowligy A S, Carlson D R, Hickstein D D, et al. Mid-infrared frequency combs at 10 GHz [J]. Opt Lett, 2020, 45(13): 3677-3680. doi:  10.1364/OL.391651
[102] Weimann C, Schindler P C, Palmer R, et al. Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission [J]. Opt Express, 2014, 22(3): 3629-3637. doi:  10.1364/OE.22.003629
[103] Jiang P, Balram K C. Suspended gallium arsenide platform for building large scale photonic integrated circuits: Passive devices [J]. Opt Express, 2020, 28(8): 12262-12271. doi:  10.1364/OE.385618
[104] Pasquazi A, Peccianti M, Razzari L, et al. Micro-combs: A novel generation of optical sources [J]. Physics Reports, 2018, 729: 1-81. doi:  10.1016/j.physrep.2017.08.004
[105] Roslund J, de Araújo R M, Jiang S, et al. Wavelength-multiplexed quantum networks with ultrafast frequency combs [J]. Nature Photonics, 2014, 8(2): 109-112. doi:  10.1038/nphoton.2013.340
[106] Pfeifle J, Brasch V, Lauermann M, et al. Coherent terabit communications with microresonator Kerr frequency combs [J]. Nature Photonics, 2014, 8(5): 375-380. doi:  10.1038/nphoton.2014.57
[107] Pfeifle J, Vujicic V, Watts R T, et al. Flexible terabit/s nyquist-wdm super-channels using a gain-switched comb source [J]. Optics Express, 2015, 23(2): 724-738. doi:  10.1364/OE.23.000724
[108] Doi M, Sugiyama M, Tanaka K, et al. Advanced LiNbO3 optical modulators for broadband optical communications [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(4): 745-750. doi:  10.1109/JSTQE.2006.876192
[109] Li X, Wang M, Li J, et al. Monolithic 1×4 reconfigurable electro-optic tunable interleaver in lithium niobate thin film [J]. IEEE Photonics Technology Letters, 2019, 31(20): 1611-1614. doi:  10.1109/LPT.2019.2938325
[110] Dupuis N, Doerr C R, Zhang L M, et al. InP-based comb generator for optical OFDM [J]. Journal of Lightwave Technology, 2012, 30(4): 466-472. doi:  10.1109/JLT.2011.2173463
[111] Lin J C, Sepehrian H, Xu Y L, et al. Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks [J]. IEEE Photonics Technology Letters, 2018, 30(17): 1495-1498. doi:  10.1109/LPT.2018.2856767
[112] Cingöz A, Yost D C, Allison T K, et al. Direct frequency comb spectroscopy in the extreme ultraviolet [J]. Nature, 2012, 482(7383): 68-71. doi:  10.1038/nature10711
[113] Ideguchi T, Poisson A, Guelachvili G, et al. Adaptive real-time dual-comb spectroscopy [J]. Nature Communications, 2014, 5(1): 3375. doi:  10.1038/ncomms4375
[114] Dutt A, Joshi C, Ji X, et al. On-chip dual-comb source for spectroscopy [J]. Science Advances, 2018, 4(3): e1701858. doi:  10.1126/sciadv.1701858
[115] Yu M, Okawachi Y, Griffith A G, et al. Silicon-chip-based mid-infrared dual-comb spectroscopy [J]. Nature Commu-nications, 2018, 9(1): 1869. doi:  10.1038/s41467-018-04350-1
[116] Shams-Ansari A, Yu M, Chen Z, et al. Thin-film lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy [J]. Communications Physics, 2022, 5(1): 88. doi:  10.1038/s42005-022-00865-8