[1] Lippmann G. La photographie integrale [J]. Comptes Rendus Academie Sci, 1908, 146: 446−451.
[2] Martínez-Corral M, Javidi B. Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems [J]. Advances in Optics and Photonics, 2018, 10(3): 512−566. doi:  10.1364/AOP.10.000512
[3] Martínez-Corral M, Dorado A, Barreiro J C, et al. Recent advances in the capture and display of macroscopic and microscopic 3-D scenes by integral imaging [J]. Proceedings of the IEEE, 2017, 105(5): 825−836. doi:  10.1109/JPROC.2017.2655260
[4] Yang J C, Everett M, Buehler C, et al. A real-time distributed light field camera [J]. Rendering Techniques, 2002, 2002: 77−86.
[5] Ng R, Levoy M, Brédif M, et al. Light field photography with a hand-held plenoptic camera [J]. Computer Science Technical Report CSTR, 2005, 2(11): 1−11.
[6] Xiao X, Javidi B, Martinez-Corral M, et al. Advances in three-dimensional integral imaging: sensing, display, and applications [J]. Applied Optics, 2013, 52(4): 546−560. doi:  10.1364/AO.52.000546
[7] Martinez-Cuenca R, Pons A, Saavedra G, et al. Optically-corrected elemental images for undistorted integral image display [J]. Optics Express, 2006, 14(21): 9657−9663. doi:  10.1364/OE.14.009657
[8] Arai J, Okano F, Hoshino H, et al. Gradient-index lens-array method based on real-time integral photography for three-dimensional images [J]. Applied Optics, 1998, 37(11): 2034−2045. doi:  10.1364/AO.37.002034
[9] Hahn J, Kim Y, Kim E H, et al. Undistorted pickup method of both virtual and real objects for integral imaging [J]. Optics Express, 2008, 16(18): 13969−13978. doi:  10.1364/OE.16.013969
[10] Ives H E. Optical properties of a Lippmann lenticulated sheet [J]. Journal of the Optical Society of America, 1931, 21(3): 171−176. doi:  10.1364/JOSA.21.000171
[11] Jang J S, Javidi B. Two-step integral imaging for orthoscopic three-dimensional imaging with improved viewing resolution [J]. Optical Engineering, 2002, 41(10): 2568−2572. doi:  10.1117/1.1505961
[12] Okano F, Hoshino H, Arai J, et al. Real-time pickup method for a three-dimensional image based on integral photography [J]. Applied Optics, 1997, 36(7): 1598−1603. doi:  10.1364/AO.36.001598
[13] Navarro H, Martínez-Cuenca R, Saavedra G, et al. 3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC) [J]. Optics Express, 2010, 18(25): 25573−25583. doi:  10.1364/OE.18.025573
[14] Xiao X, Shen X, Martinez-Corral M, et al. Multiple-planes pseudoscopic-to-orthoscopic conversion for 3D integral imaging display [J]. Journal of Display Technology, 2015, 11(11): 921−926. doi:  10.1109/JDT.2014.2387854
[15] Martínez-Corral M, Dorado A, Navarro H, et al. Three-dimensional display by smart pseudoscopic-to-orthoscopic conversion with tunable focus [J]. Applied Optics, 2014, 53(22): E19−E25. doi:  10.1364/AO.53.000E19
[16] Wang Z, Lv G, Feng Q, et al. A fast-direct pixel mapping algorithm for displaying orthoscopic 3D images with full control of display parameters [J]. Optics Communications, 2018, 427: 528−534. doi:  10.1016/j.optcom.2018.06.067
[17] Yan Z, Jiang X, Yan X. Performance-improved smart pseudoscopic to orthoscopic conversion for integral imaging by use of lens array shifting technique [J]. Optics Communications, 2018, 420: 157−162. doi:  10.1016/j.optcom.2018.03.061
[18] Deng H, Wang Q H, Li D H, et al. Realization of undistorted and orthoscopic integral imaging without black zone in real and virtual fields [J]. Journal of Display Technology, 2011, 7(5): 255−258. doi:  10.1109/JDT.2011.2106761
[19] Jang J S, Javidi B. Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging [J]. Optical Engineering, 2003, 42(7): 1869−1871. doi:  10.1117/1.1584054
[20] Zhang J L, Wang X R, Chen Y J, et al. Feasibility study for pseudoscopic problem in integral imaging using negative refractive index materials [J]. Optics Express, 2014, 22(17): 20757−20769. doi:  10.1364/OE.22.020757
[21] Algorri J F, Urruchi V, Bennis N, et al. Integral imaging capture system with tunable field of view based on liquid crystal microlenses [J]. IEEE Photonics Technology Letters, 2016, 28(17): 1854−1857. doi:  10.1109/LPT.2016.2572258
[22] Martínez-Corral M, Javidi B, Martínez-Cuenca R, et al. Integral imaging with improved depth of field by use of amplitude-modulated microlens arrays [J]. Applied Optics, 2004, 43(31): 5806−5813. doi:  10.1364/AO.43.005806
[23] Luo C G, Wang Q H, Deng H, et al. Extended depth-of-field in integral-imaging pickup process based on amplitude-modulated sensor arrays [J]. Optical Engineering, 2015, 54(7): 073108. doi:  10.1117/1.OE.54.7.073108
[24] Luo C G, Deng H, Li L, et al. Integral imaging pickup method with extended depth-of-field by gradient-amplitude modulation [J]. Journal of Display Technology, 2016, 12(10): 1205−1211. doi:  10.1109/JDT.2016.2580098
[25] Yim J, Choi K H, Min S W. Real object pickup method of integral imaging using offset lens array [J]. Applied Optics, 2017, 56(13): F167−F172. doi:  10.1364/AO.56.00F167
[26] Jeong Y, Kim J, Yeom J, et al. Real-time depth controllable integral imaging pickup and reconstruction method with a light field camera [J]. Applied Optics, 2015, 54(35): 10333−10341. doi:  10.1364/AO.54.010333
[27] Jang J S, Javidi B. Three-dimensional synthetic aperture integral imaging [J]. Optics Letters, 2002, 27(13): 1144−1146. doi:  10.1364/OL.27.001144
[28] Wilburn B, Joshi N, Vaish V, et al. High performance imaging using large camera arrays[C]//ACM Transactions on Graphics (TOG), 2005, 24(3): 765-776.
[29] Taguchi Y, Koike T, Takahashi K, et al. TransCAIP: A live 3D TV system using a camera array and an integral photography display with interactive control of viewing parameters [J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(5): 841−852. doi:  10.1109/TVCG.2009.30
[30] Deng H, Wang Q, Li D. Method of generating orthoscopic elemental image array from sparse camera array [J]. Chinese Optics Letters, 2012, 10(6): 061102. doi:  10.3788/COL201210.061102
[31] Xing Y, Xiong Z L, Zhao M, et al. Real-time integral imaging pickup system using camera array[C]//Advances in Display Technologies VIII. International Society for Optics and Photonics, 2018, 10556: 105560D.
[32] Xiong Z L, Xing Y, Deng H, et al. 19‐1: Planar parallax based camera array calibration method for integral imaging three‐dimensional information acquirement[C]//SID Symposium Digest of Technical Papers. 2016, 47(1): 219−222.
[33] Danesh Panah M, Javidi B, Watson E A. Three dimensional imaging with randomly distributed sensors [J]. Optics Express, 2008, 16(9): 6368−6377. doi:  10.1364/OE.16.006368
[34] Xiao X, DaneshPanah M, Cho M, et al. 3D integral imaging using sparse sensors with unknown positions [J]. Journal of Display Technology, 2010, 6(12): 614−619. doi:  10.1109/JDT.2010.2070485
[35] Zhang M, Zhong Z, Piao Y, et al. Three-dimensional integral imaging with circular non-uniform distribution [J]. Optics and Lasers in Engineering, 2020, 126: 105912. doi:  10.1016/j.optlaseng.2019.105912
[36] Yi F, Lee J, Moon I. Three-dimensional integral imaging by using unknown sensor array position calibration with a closed-form solution [J]. Optical Engineering, 2016, 55(2): 023104. doi:  10.1117/1.OE.55.2.023104
[37] Sotoca J M, Latorre-Carmona P, Pla F, et al. Integral imaging techniques for flexible sensing through image-based reprojection [J]. Journal of the Optical Society of America A, 2017, 34(10): 1776−1786. doi:  10.1364/JOSAA.34.001776
[38] Wei J, Wang S, Zhao Y, et al. Synthetic aperture integral imaging using edge depth maps of unstructured monocular video [J]. Optics Express, 2018, 26(26): 34894−34908. doi:  10.1364/OE.26.034894
[39] Shin D H, Lee S H, Kim E S. Optical display of true 3D objects in depth-priority integral imaging using an active sensor [J]. Optics Communications, 2007, 275(2): 330−334. doi:  10.1016/j.optcom.2007.03.072
[40] Li G, Kwon K C, Shin G H, et al. Simplified integral imaging pickup method for real objects using a depth camera [J]. Journal of the Optical Society of Korea, 2012, 16(4): 381−385. doi:  10.3807/JOSK.2012.16.4.381
[41] Jeong J S, Kwon K C, Erdenebat M U, et al. Development of a real-time integral imaging display system based on graphics processing unit parallel processing using a depth camera [J]. Optical Engineering, 2014, 53(1): 015103. doi:  10.1117/1.OE.53.1.015103
[42] Yoo H. Transformations and their analysis from a RGBD image to elemental image array for 3D integral imaging and coding [J]. KSII Transactions on Internet and Information Systems, 2018, 12(5): 2273−2286.
[43] Hong S, Dorado A, Saavedra G, et al. Three-dimensional integral-imaging display from calibrated and depth-hole filtered kinect information [J]. Journal of Display Technology, 2016, 12(11): 1301−1308. doi:  10.1109/JDT.2016.2594076
[44] Erdenebat M U, Piao Y L, Darkhanbaatar N, et al. Advanced mobile three-dimensional display based on computer-generated integral imaging[C]//Optics, Photonics, and Digital Technologies for Imaging Applications V. International Society for Optics and Photonics, 2018, 10679: 106790I.
[45] Jeong J S, Erdenebat M U, Kwon K C, et al. Real object-based integral imaging system using a depth camera and a polygon model [J]. Optical Engineering, 2017, 56(1): 013110. doi:  10.1117/1.OE.56.1.013110
[46] Hong S, Saavedra G, Martinez-Corral M. Full parallax three-dimensional display from Kinect v1 and v2 [J]. Optical Engineering, 2016, 56(4): 041305. doi:  10.1117/1.OE.56.4.041305
[47] Ikeya K, Arai J, Mishina T, et al. Capturing method for integral three-dimensional imaging using multiviewpoint robotic cameras [J]. Journal of Electronic Imaging, 2018, 27(2): 023022.
[48] Erdenebat M U, Kim B J, Piao Y L, et al. Three-dimensional image acquisition and reconstruction system on a mobile device based on computer-generated integral imaging [J]. Applied Optics, 2017, 56(28): 7796−7802. doi:  10.1364/AO.56.007796
[49] Xiong Z L, Wang Q H, Xing Y, et al. Active integral imaging system based on multiple structured light method [J]. Optics Express, 2015, 23(21): 27094−27104. doi:  10.1364/OE.23.027094
[50] Halle M. Multiple viewpoint rendering[C]//SIGGRAPH, 1998, 98: 243−254.
[51] Min S W, Park K S, Lee B, et al. Enhanced image mapping algorithm for computer-generated integral imaging system [J]. Japanese Journal of Applied Physics, 2006, 45(7L): L744.
[52] Min S W, Kim J, Lee B. New characteristic equation of three-dimensional integral imaging system and its applications [J]. Japanese Journal of Applied Physics, 2004, 44(1L): L71.
[53] Kwon K C, Park C, Erdenebat M U, et al. High speed image space parallel processing for computer-generated integral imaging system [J]. Optics Express, 2012, 20(2): 732−740. doi:  10.1364/OE.20.000732
[54] Kim D H, Erdenebat M U, Kwon K C, et al. Real-time 3D display system based on computer-generated integral imaging technique using enhanced ISPP for hexagonal lens array [J]. Applied Optics, 2013, 52(34): 8411−8418. doi:  10.1364/AO.52.008411
[55] Jiao S, Wang X, Zhou M, et al. Multiple ray cluster rendering for interactive integral imaging system [J]. Optics Express, 2013, 21(8): 10070−10086. doi:  10.1364/OE.21.010070
[56] Li S L, Wang Q H, Xiong Z L, et al. Multiple orthographic frustum combing for real-time computer-generated integral imaging system [J]. Journal of Display Technology, 2014, 10(8): 704−709. doi:  10.1109/JDT.2014.2315665
[57] Chen G, Ma C, Fan Z, et al. Real-time lens based rendering algorithm for super-multiview integral photography without image resampling [J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 24(9): 2600−2609.
[58] Xing S, Sang X, Yu X, et al. High-efficient computer-generated integral imaging based on the backward ray-tracing technique and optical reconstruction [J]. Optics Express, 2017, 25(1): 330−338. doi:  10.1364/OE.25.000330
[59] Wikipedia. Ray tracing (graphics)[EB/OL]. [2020-01-10]. https://en.wikipedia.org/wiki/Ray_tracing_(graphics).
[60] Huo W, Sang X, Xing S, et al. Backward ray tracing based rectification for real-time integral imaging display system [J]. Optics Communications, 2020, 458: 124752. doi:  10.1016/j.optcom.2019.124752
[61] Choi J G, Choi H M, Hwang Y S, et al. Real-time sensing and three-dimensional display of far outdoor scenes based on asymmetric integral imaging [J]. Optics and Lasers in Engineering, 2017, 94: 44−57. doi:  10.1016/j.optlaseng.2017.02.013
[62] Zhao Min, Xiong Zhaolong, Xing Yan, et al. Real-time integral imaging pickup system based on binocular stereo camera [J]. Infrared and Laser Engineering, 2017, 46(11): 1103007. (in Chinese) doi:  10.3788/IRLA201746.1103007