[1] Wu Wenda, Zhang Bao, Hong Yongfeng, et al. Design of co-aperture antenna for airborne infrared and synthetic aperture radar [J]. Chinese Optics, 2020, 13(3): 595-604. (in Chinese)
[2] Amoon M, Rezai-Rad G A. Automatic target recognition of synthetic aperture radar (SAR) images based on optimal selection of Zernike moment features [J]. IET Computer Vision, 2014, 8(2): 77-85. doi:  10.1049/iet-cvi.2013.0027
[3] Xie Qin, Zhang Hong. Multi-level SAR image enhancement based on regularization with application to target recognition [J]. Journal of Electronic Measurement and Instrumentation, 2018, 34(8): 21-28. (in Chinese)
[4] Cui Z Y, Cao Z J, Yang J Y, et al. Target recognition in synthetic aperture radar via non-negative matrix factorization [J]. IET Radar, Sonar and Navigation, 2015, 9(9): 1376-1385. doi:  10.1049/iet-rsn.2014.0407
[5] Dong G G, Kuang G Y. Classification on the Monogenic scale space: application to target recognition in SAR image [J]. IEEE Transactions on Image Processing, 2015, 24(8): 2527-2539. doi:  10.1109/TIP.2015.2421440
[6] Li Hui. SAR target recognition based on Gaussian mixture modeling of peak features [J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(8): 103-108. (in Chinese)
[7] Ding Baiyuan, Wen Gongjian, Yu Liansheng, et al. Matching of attributed scattering center and its application to synthetic aperture radar Automatic Target Recognition [J]. Journal of Radar, 2017, 6(2): 157-166. (in Chinese)
[8] Liu H C, Li S T. Decision fusion of sparse representation and support vector machine for SAR image target recognition [J]. Neurocomputing, 2013, 113: 97-104. doi:  10.1016/j.neucom.2013.01.033
[9] Thiagaraianm J, Ramamurthy K, Knee P P, et al. Sparse representations for automatic target classification in SAR images[C]//4th Communications, Control and Signal Processing, 2010: 1–4.
[10] Chen S Z, Wang H P, Xu F, et al. Target classification using the deep convolutional networks for SAR images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806-4817. doi:  10.1109/TGRS.2016.2551720
[11] Zhang Panpan, Luo Haibo, Ju Morang, et al. An improved capsule and its application in target recognition of SAR images [J]. Infrared and Laser Engineering, 2020, 49(5): 20201010. (in Chinese) doi:  10.3788/irla.26_invited-zhangpanpan
[12] Xu Ying, Gu Yu, Peng Dongliang, et al. SAR ATR based on disentangled representation learning generative adversarial networks and support vector machine [J]. Optics and Precision Engineering, 2020, 28(3): 727-735. (in Chinese) doi:  10.3788/OPE.20202803.0727
[13] Yeh M H. The complex bidimensional empirical mode decomposition [J]. Signal Processing, 2012, 92: 523-541. doi:  10.1016/j.sigpro.2011.08.019
[14] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[C]//Proceeding of the Royal Society of London, 1998: 987–995.
[15] Ye Song, Li Yuanzhuang, Sun Yongfeng, et al. Extraction of spatial heterodyne spectroscopy target based on empirical mode decomposition and regression analysis [J]. Infrared and Laser Engineering, 2018, 47(12): 1223001. (in Chinese) doi:  10.3788/IRLA201847.1223001
[16] Chen Zhencheng, Wu Xianliang, Zhao Feijun. Denoising and implementation of photoplethysmography signal based on EEMD and wavelet threshold [J]. Optics and Precision Engineering, 2019, 27(6): 1327-1334. (in Chinese)
[17] Chang M, You X, Cao Z. Bidimensional empirical mode decomposition for SAR image feature extraction with application to target recognition [J]. IEEE Access, 2019, 7: 135720-135731. doi:  10.1109/ACCESS.2019.2941397
[18] Tan Cuimei, Xu Tingfa, Ma Xu, et al. Graph-spectral hyperspectral video restoration based on compressive sensing [J]. Chinese Optics, 2018, 11(6): 949-957. (in Chinese) doi:  10.3788/co.20181106.0949