[1] Brown D C, Kuper J W. Solid-state lasers: Steady progress through the decades [J]. Optics and Photonics News, 2009, 20(5): 36-41. doi:  10.1364/OPN.20.5.000036
[2] Zhuo N, Liu F, Wang Z. Quantum cascade lasers: from sketch to mainstream in the mid and far infrared [J]. Journal of Semiconductors, 2020, 41(1): 010301. doi:  10.1088/1674-4926/41/1/010301
[3] Bai Zhenxu, Gao Jia, Zhao Chen, et al. Research progress of long-wave infrared lasers based on nonlinear frequency conversion [J]. Acta Optica Sinica, 2023, 43(3): 0314001. (in Chinese) doi:  10.3788/AOS221126
[4] Yao Baoquan, Yang Ke, Mi Shuyi, et al. Research progress of high-power Ho∶YAG lasers and its application for pumping mid-far-infrared nonlinear frequency conversion in ZGP, BGSe and CdSe crystals [J]. Chinese Journal of Lasers, 2022, 49(1): 0101002. (in Chinese) doi:  10.3788/CJL202249.0101002
[5] Koch G J, Barnes B W, Petros M, et al. Coherent differential absorption lidar measurements of CO2 [J]. Applied Optics, 2004, 43(26): 5092-5099. doi:  10.1364/AO.43.005092
[6] Koch G J, Beyon J Y, Barnes B W, et al. High-energy 2 μm Doppler lidar for wind measurements [J]. Optical Engineering, 2007, 46(11): 116201. doi:  10.1117/1.2802584
[7] Dai T Y, Wu J, Ju L, et al. A tunable and single-longitudinal-mode Ho: YLF laser [J]. Infrared Physics & Technology, 2016, 77: 149-152.
[8] Gibert F, Flamant P H, Bruneau D, et al. Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer [J]. Applied Optics, 2006, 45(18): 4448-4458. doi:  10.1364/AO.45.004448
[9] Niu Changdong, Dai Ruifeng, Liu Ruike, et al. Single-longitudinal-mode selection technology and application of solid-state laser [J]. Electro-Optic Technology Application, 2020, 35(5): 38-47. (in Chinese)
[10] Wang Qing, Gao Chunqing. Research progress on eye-safe all-solid-state single-frequency lasers [J]. Chinese Journal of Lasers, 2021, 48(5): 0501004. (in Chinese)
[11] Yao B Q, Duan X M, Fang D, et al. 7.3 W of single-frequency output power at 2.09 μm from an Ho: YAG monolithic nonplanar ring laser [J]. Optics Letters, 2008, 33(18): 2161-2163. doi:  10.1364/OL.33.002161
[12] Wu J, Ju Y, Dai T Y, et al. 1.5 W high efficiency and tunable single-longitudinal-mode Ho: YLF ring laser based on Faraday effect [J]. Optics Express, 2017, 25(22): 27671-27677. doi:  10.1364/OE.25.027671
[13] Singh U N, Walsh B M, Yu J, et al. Twenty years of Tm: Ho: YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing [J]. Optical Materials Express, 2015, 5(4): 827-837. doi:  10.1364/OME.5.000827
[14] Wulfmeyer V, Randall M, Brewer A, et al. 2 μm Doppler lidar transmitter with high frequency stability and low chirp [J]. Optics Letters, 2000, 25(17): 1228-1230. doi:  10.1364/OL.25.001228
[15] Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 μm thulium fiber laser [J]. Optics & Laser Technology, 2012, 44(7): 2095-2099.
[16] Fried N M, Murray K E. High-power thulium fiber laser ablation of urinary tissues at 1.94 microm [J]. Journal of Endourology, 2005, 19(1): 25-31. doi:  10.1089/end.2005.19.25
[17] Yan Bingzheng, Bai Zhenxu, Qi Yaoyao, et al. Advances in all-solid-state laser for novel low-dimensional material saturated absorbers (Invited) [J]. Electro-Optic Technology Application, 2022, 37(4): 27-39. (in Chinese)
[18] Zheng Hao, Zhao Chen, Zhang Fei, et al. Study on the longitudinal mode characteristic of idler wave in MgO: PPLN infrared optical parametric oscillator [J]. Infrared and Laser Engineering, 2023, 52(12): 20230378. (in Chinese)
[19] Zhang Yakai, Chen Hui, Bai Zhenao, et al. Multi-wavelength red diamond Raman laser [J]. Infrared and Laser Engineering, 2023, 52(8): 20230329. (in Chinese) doi:  10.3788/IRLA20230329
[20] Bai Z, Zhao Z, Tian M, et al. A comprehensive review on the development and applications of narrow‐linewidth lasers [J]. Microwave and Optical Technology Letters, 2022, 64(12): 2244-2255. doi:  10.1002/mop.33046
[21] Li Pengfei, Zhang Fei, Li Kai, et al. Research progress of high-frequency and high-energy solid state lasers at 1.6 µm ( invited) [J]. Infrared and Laser Engineering, 2023, 52(8): 20230403. (in Chinese) doi:  10.3788/IRLA20230403
[22] Chen Yilan, Zhu Xiaolei, Zhang Junxuan, et al. Development of pulsed single-frequency 2 μm all-solid-state laser [J]. Laser & Optoelectronics Progress, 2020, 57(5): 050006. (in Chinese)
[23] Zhang X P, Wang Z H, Liu S, et al. Development of single-longitudinal-mode selection technology for solid-state lasers [J]. International Journal of Optics, 2021, 2021: 6667015.
[24] Park Y, Giuliani G, Byer R. Single axial mode operation of a Q-switched Nd: YAG oscillator by injection seeding [J]. IEEE Journal of Quantum Electronics, 1984, 20(2): 117-125. doi:  10.1109/JQE.1984.1072371
[25] Scholle K, Lamrini S, Koopmann P, et al. 2 µm laser sources and their possible applications [J]. Frontiers in Guided Wave Optics & Optoelectronics, 2010, 21: 471-500.
[26] Dai T Y, Guo S X, Duan X M, et al. High efficiency single-longitudinal-mode resonantly-pumped Ho: GdTaO4 laser at 2068 nm [J]. Optics Express, 2019, 27(23): 34204-34210. doi:  10.1364/OE.27.034204
[27] Zhu Hao, Wang Bohao, Tao Jiayou, et al. Single longitudinal mode laser output through twisted mode cavity method [J]. Journal of Hunan Institute of Science and Technology (Natural Sciences), 2021, 34(3): 13-17. (in Chinese)
[28] Yao B Q, Dai T Y, Duan X M, et al. Tunable single-longitudinal-mode Er: YAG laser using a twisted-mode technique at 1.6 μm [J]. Laser Physics Letters, 2015, 12(2): 025004. doi:  10.1088/1612-2011/12/2/025004
[29] Jiang Y W, Li P L, Fu X, et al. Sub-nanosecond, single longitudinal mode laser based on a VBG‐coupled EOQ Nd: YVO4 oscillator for remote sensing [J]. Microwave and Optical Technology Letters, 2021, 63(10): 2541-2547. doi:  10.1002/mop.32988
[30] Huang H T, Wang H, Shen D Y. VBG-locked continuous-wave and passively Q-switched Tm: Y2O3 ceramic laser at 2.1 μm [J]. Optical Materials Express, 2017, 7(9): 3147-3154. doi:  10.1364/OME.7.003147
[31] Gibert F, Edouart D, Cenac C, et al. 2 μm high-power multiple-frequency single-mode Q-switched Ho: YLF laser for DIAL application [J]. Applied Physics B, 2014, 116(4): 967-976. doi:  10.1007/s00340-014-5784-3
[32] Walther T, Larsen M P, Fry E S. Generation of Fourier-transform-limited 35 ns pulses with a ramp-hold-fire seeding technique in a Ti: sapphire laser [J]. Applied Optics, 2001, 40(18): 3046-3050. doi:  10.1364/AO.40.003046
[33] Henderson S W, Yuen E H, Fry E S. Fast resonance-detection technique for single-frequency operation of injection-seeded Nd: YAG lasers [J]. Optics Letters, 1986, 11(11): 715-717. doi:  10.1364/OL.11.000715
[34] Yu J, Trieu B C, Modlin E A, et al. 1 J/pulse Q-switched 2 µm solid-state laser [J]. Optics Letters, 2006, 31(4): 462-464. doi:  10.1364/OL.31.000462
[35] Koch G J, Beyon J Y, Petzar P J, et al. Field testing of a high-energy 2 μm Doppler lidar [J]. Journal of Applied Remote Sensing, 2010, 4(1): 043512. doi:  10.1117/1.3368726
[36] Bai Y X, Yu J R, Wong T H, et al. Single-mode, high repetition rate, compact Ho: YLF laser for space-borne lidar applications[C]//CLEO: Applications and Technology. IEEE, 2014: AW1P. 4.
[37] Dai T Y, Fan Z G, Wu J, et al. High power single-longitudinal-mode Ho: YLF unidirectional ring laser based on a composite structure of acousto-optic device and wave plate [J]. Infrared Physics & Technology, 2017, 82: 40-43.
[38] Wang R X, Yao B Q, Zhao B R, et al. Single-longitudinal-mode Ho: YVO4 MOPA system with a passively Q-switched unidirectional ring oscillator [J]. Optics Express, 2019, 27(24): 34618-34625. doi:  10.1364/OE.27.034618
[39] Mizutani K, Ishii S, Aoki M, et al. 2 μm Doppler wind lidar with a Tm: fiber-laser-pumped Ho: YLF laser [J]. Optics Letters, 2018, 43(2): 202-205. doi:  10.1364/OL.43.000202
[40] Wu J, Wu Y, Dai T Y, et al. Diode pumped high efficiency single-longitudinal-mode Tm, Ho: YAP ring laser [J]. Optical Engineering, 2019, 58(1): 016116.
[41] Wu J, Ju Y L, Yao B Q, et al. High power single-longitudinal-mode Ho3+: YVO4 unidirectional ring laser [J]. Chinese Optics Letters, 2017, 15(3): 031402. doi:  10.3788/COL201715.031402
[42] Dai T Y, Wang Y P, Guo S X, et al. Tunable twisted-mode Ho: YAG laser at continuous-wave and pulsed operation [J]. Optics Express, 2020, 28(21): 31775-31780. doi:  10.1364/OE.405153
[43] Ju Y L, Liu W, Yao B Q, et al. Diode-pumped tunable single-longitudinal-mode Tm, Ho: YAG twisted-mode laser [J]. Chinese Optics Letters, 2015, 13(11): 111403.
[44] Gao C Q, Wang R X, Lin Z, et al. 2 μm single-frequency Tm: YAG laser generated from a diode-pumped L-shaped twisted mode cavity [J]. Applied Physics B, 2012, 107(1): 67-70. doi:  10.1007/s00340-011-4838-z
[45] Dai Tongyu, Yao Baoquan, Liu Wei, et al. Single-doped Ho: YAG tunable single-longitudinal-mode laser based on twisted-mode technology: CN201410457753.5[P]. 2014-09-10. (in Chinese)
[46] Li L, Ju Y L, Dai T Y, et al. L-shaped single-longitudinal-mode Tm, Ho: YAG lasers based on twisted mode cavity [J]. Laser & Optoelectronics Progress, 2017, 54(8): 081408. (in Chinese)
[47] Jin C J, Bai Y, Li L F, et al. A single-frequency, graphene-based passively Q-switched Tm: YAP laser [J]. Laser Physics, 2014, 25(1): 015001.
[48] Duan X M, Li L J, Guo X S, et al. Wavelength-locked continuous-wave and Q-switched Ho: CaF2 laser at 2100.5 nm [J]. Optics Express, 2018, 26(21): 26916-26924. doi:  10.1364/OE.26.026916
[49] Duan X M, Zhang W S, Li L J, et al. Electro-optically cavity-dumped Ho: SSO laser with a pulse width of 3.6 ns and linewidth of 70 pm [J]. Laser Physics, 2018, 29(1): 015802.
[50] Berthomé Q, Grisard A, Faure B, et al. Actively Q-switched tunable single-longitudinal-mode 2 µm Tm: YAP laser using a transversally chirped volume Bragg grating [J]. Optics Express, 2020, 28(4): 5013-5021. doi:  10.1364/OE.384499
[51] Li Menglong, Gao Long, Shi Wenzong, et al. Progress in all-solid-state single-frequency lasers [J]. Laser & Optoelectronics Progress, 2016, 53(8): 080003. (in Chinese)
[52] Li Y J, Feng J X, Li P, et al. 400 mW low noise continuous-wave single-frequency Er, Yb: YAl3 (BO3) 4 laser at 1.55 μm [J]. Optics Express, 2013, 21(5): 6082-6090. doi:  10.1364/OE.21.006082
[53] Huang J H, Chen Y J, Lin Y F, et al. 940 mW 1564 nm multi-longitudinal-mode and 440 mW 1537 nm single-longitudinal-mode continuous-wave Er: Yb: Lu2Si2O7 microchip lasers [J]. Optics Letters, 2018, 43(8): 1643-1646. doi:  10.1364/OL.43.001643
[54] Loiko P, Serres J M, Mateos X, et al. Subnanosecond Tm: KLuW microchip laser Q-switched by a Cr: ZnS saturable absorber [J]. Optics Letters, 2015, 40(22): 5220-5223. doi:  10.1364/OL.40.005220
[55] Zhang D, Wang Y, Chen Y, et al. Study on satellite pulse characteristics of LD-end pumped sub-nanosecond Nd: YAG/Cr4+: YAG oscillator [J]. Optik, 2023, 286: 170889. doi:  10.1016/j.ijleo.2023.170889
[56] Singh U N, Williams-byrd J A, Barnes N P, et al. Diode-pumped 2-μm solid state lidar transmitter for wind measurements [J]. Lidar Atmospheric Monitoring, 1997, 3104: 173-178. doi:  10.1117/12.275147
[57] Singh U N. Development of high-pulse energy Ho: Tm: YLF coherent transmitters [J]. Laser Radar Technology and Applications III, 1998, 3380: 70-74.
[58] Dai T Y, Ju Y L, Duan X M, et al. 2130.7 nm, single-frequency Q-switched operation of Tm, Ho: YAlO3 laser injection-seeded by a microchip Tm, Ho: YAlO3 laser [J]. Applied Physics Express, 2012, 5(8): 082702. doi:  10.1143/APEX.5.082702
[59] Wang Y Y, Liu J H, Li S C, et al. Stable and simple structure passively Q-switched single-longitudinal-mode laser [J]. Chinese Journal of Lasers, 2004, 31(5): 531-534. (in Chinese)
[60] Zhang X L, Li L, Cui J H, et al. Single longitudinal mode and continuously tunable frequency Tm, Ho: YLF laser with two solid etalons [J]. Laser Physics Letters, 2010, 7(3): 194-197. doi:  10.1002/lapl.200910120
[61] Wang L, Gao C Q, Gao M W, et al. A diode-pumped tunable single frequency Tm: YAG laser at room temperature using two etalons [J]. Laser Physics, 2012, 22(2): 398-402. doi:  10.1134/S1054660X12020181
[62] Jin D, Bai Z, Wang Q, et al. Doubly Q-switched single longitudinal mode Nd: YAG laser with electro-optical modulator and Cr4+: YAG [J]. Optics Communications, 2020, 463: 125500.
[63] Li Nan, Wang Weimin, Lu Yanhua, et al. Tunable linewidth control technique for solid-state laser based on Fabry-Perot etalon [J]. High Power Laser and Particle Beams, 2013, 25(5): 1139-1143. (in Chinese) doi:  10.3788/HPLPB20132505.1139
[64] Yang X T, Liu L, Zhang P, et al. A resonantly pumped single-longitudinal mode Ho: Sc2SiO5 laser with two Fabry–Perot etalons [J]. Applied Sciences, 2017, 7(5): 434-435. doi:  10.3390/app7050434
[65] Dai T Y, Ju Y L, Yao B Q, et al. Single-frequency, Q-switched Ho: YAG laser at room temperature injection-seeded by two F-P etalons-restricted Tm, Ho: YAG laser [J]. Optics Letters, 2012, 37(11): 1850-1852. doi:  10.1364/OL.37.001850
[66] Dai T Y, Wang Y P, Wu X S, et al. An injection-seeded Q-switched Ho: YLF laser by a tunable single-longitudinal-mode Tm, Ho: YLF laser at 2050.96 nm [J]. Optics Laser Technology, 2018, 106: 7-11. doi:  10.1016/j.optlastec.2018.03.026
[67] Strauss H J, Koen W, Bollig C, et al. Ho: YLF & Ho: LuLF slab amplifier system delivering 200 mJ, 2 µm single-frequency pulses [J]. Optics Express, 2011, 19(15): 13974-13979. doi:  10.1364/OE.19.013974
[68] Strauss H J, Preussler D, Esser M J D, et al. 330 mJ, single-frequency Ho:YLF slab amplifier [J]. Optics Letters, 2013, 38(7): 1022-1024.
[69] Wang Y P, Dai T Y, Liu X Y, et al. Dual-wavelength injection-seeded Q-switched Ho: YLF laser for CO2 differential absorption lidar application [J]. Optics Letters, 2019, 44(24): 6049. doi:  10.1364/OL.44.006049
[70] Yan D, Yuan Y, Wang Y P, et al. High-energy, alignment-insensitive, injection-seeded Q-switched Ho:yttrium aluminum garnet single-frequency laser [J]. High Power Laser Science and Engineering, 2023, 11: e66.
[71] Zhang Y S, Gao C Q, Gao M W, et al. Frequency stabilization of a single-frequency Q-switched Tm: YAG laser by using injection seeding technique [J]. Applied Optics, 2011, 50(21): 4232-4236. doi:  10.1364/AO.50.004232
[72] Kane T J, Byer R L. Monolithic, unidirectional single-mode Nd: YAG ring laser [J]. Optics Letters, 1985, 10(2): 65-67. doi:  10.1364/OL.10.000065
[73] Nilsson A C, Gustafson E K, Byer R L. Eigenpolarization theory of monolithic nonplanar ring oscillators [J]. IEEE Journal of Quantum Electronics, 1989, 25(4): 767-790. doi:  10.1109/3.17343
[74] Kwee P, Bogan C, Danzmann K, et al. Stabilized high-power laser system for the gravitational wave detector advanced LIGO [J]. Optics Express, 2012, 20(10): 10617-10634. doi:  10.1364/OE.20.010617
[75] Dai T Y, Ju Y L, Yao B Q, et al. Injection-seeded Ho: YAG laser at room temperature by monolithic nonplanar ring laser [J]. Laser Physics Letters, 2012, 9(10): 716-720. doi:  10.7452/lapl.201210072
[76] Zhang Y X, Gao C Q, Wang Q, et al. Single-frequency, injection-seeded Q-switched Ho: YAG ceramic laser pumped by a 1.91 μm fiber-coupled LD [J]. Optics Express, 2016, 24(24): 27805. doi:  10.1364/OE.24.027805
[77] Zhang Y X, Gao C Q, Wang Q, et al. High-repetition-rate single-frequency Ho: YAG MOPA system [J]. Applied Optics, 2018, 57(15): 4222-4227. doi:  10.1364/AO.57.004222
[78] Yan D, Wang Y P, Yuan Y, et al. Injection-seeded, Q-switched Ho: YAG laser based on alignment-insensitive corner cone reflectors [J]. Optics & Laser Technology, 2023, 166: 109584.
[79] Gibert F, Edouart D, Cenac C, et al. 2 μm Ho emitter-based coherent DIAL for CO2 profiling in the atmosphere [J]. Optics Letters, 2015, 40(13): 3093-3096. doi:  10.1364/OL.40.003093
[80] Chen Y L, Cai Y H, Zhang J X, et al. 5.6 mJ, single-frequency, end-pumped Tm: Ho: LuLiF4 slab amplifier system [J]. IEEE Photonics Technology Letters, 2020, 32(5): 231-234. doi:  10.1109/LPT.2020.2969521
[81] Na Q X, Gao C Q, Wang Q, et al. 15 mJ single-frequency Ho: YAG laser resonantly pumped by a 1.9 µm laser diode [J]. Laser Physics Letters, 2016, 13(9): 095003. doi:  10.1088/1612-2011/13/9/095003
[82] Na Q X, Gao C Q, Wang Q, et al. 1 kHz single-frequency 2.09 μm Ho: YAG ring laser [J]. Applied Optics, 2017, 56(25): 7075-7078. doi:  10.1364/AO.56.007075
[83] Wang Y P, Ju Y L, Dai T Y, et al. Continuously tunable high-power single-longitudinal-mode Ho: YLF laser around the P12 CO2 absorption line [J]. Optics Letters, 2020, 45(24): 6691-6694. doi:  10.1364/OL.412617
[84] Zhang Y X, Gao C Q, Wang Q, et al. High-energy, stable single-frequency Ho: YAG ceramic amplifier system [J]. Applied Optics, 2017, 56(34): 9531-9535. doi:  10.1364/AO.56.009531
[85] Dai T Y, Ju Y L, Duan X M, et al. Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho: YAlO3 laser at 2118 nm [J]. Applied Physics B, 2013, 111: 89-92. doi:  10.1007/s00340-012-5310-4
[86] Na Q X, Gao C Q, Wang Q, et al. 44 mJ, 2.1 μm single-frequency Ho: YAG amplifier [J]. Applied Optics, 2017, 56(4): 1257-1260. doi:  10.1364/AO.56.001257
[87] Wang Y P, Ju Y L, Dai T Y, et al. Single-frequency and free-running operation of a single-pass pulsed Ho: YLF amplifier [J]. High Power Laser Science and Engineering, 2020, 8: e39.
[88] Drs J, Fischer J, Modsching N, et al. A decade of Sub-100-fs thin-disk laser oscillators [J]. Laser & Photonics Reviews, 2023, 17(8): 2200258.
[89] Song E M, Zhu G Z, Wang H L, et al. Up conversion and excited state absorption analysis in the Tm: YAG disk laser multi-pass pumped by 1 μm laser [J]. High Power Laser Science and Engineering, 2021, 9(1): e8.
[90] Bai Z X, Yuan H, Liu Z H, et al. Stimulated Brillouin scattering materials, experimental design and applications: A review [J]. Optical Materials, 2018, 75: 626-645. doi:  10.1016/j.optmat.2017.10.035
[91] Lian Yudong, Hu Qi, Xie Luyang, et al. Research on the Stokes linewidth characteristics of the pulse compression by stimulated Brillouin scattering in medium FC-770 ( invited) [J]. Infrared and Laser Engineering, 2023, 52(8): 20230402. (in Chinese)
[92] Jin Duo, Bai Zhenxu, Fan Wenqiang, et al. Four times linewidth narrowing has been achieved in diamond Brillouin laser [J]. Infrared and Laser Engineering, 2023, 52(8): 20230295. (in Chinese) doi:  10.3788/IRLA20230295
[93] Chen Bin, Bai Zhenxu, Zhao Guijuan, et al. Generation of high-efficiency hundred-millijoule stimulated Brillouin scattering in fused silica [J]. Infrared and Laser Engineering, 2023, 52(8): 20230421. (in Chinese) doi:  10.3788/IRLA20230421
[94] Cao C, Wang Y L, Bai Z X, et al. Developments of picosecond lasers based on stimulated Brillouin scattering pulse compression [J]. Frontiers in Physics, 2021, 9: 747272. doi:  10.3389/fphy.2021.747272
[95] Sun Jianing, Wangyulei, Zhangyu, et al. Thermal effect analysis of LD end-pumped Er : Yb : glass / Co : MALO crystal [J]. Infrared and Laser Engineering, 2023, 52(8): 20230349. (in Chinese)
[96] Yang Peng, Ma Lun, Jiang Yanling, et al. Thermal management technology of a liquid cooling thin-disk oscillator [J]. Acta Photonica Sinica, 2016, 45(3): 0314007. (in Chinese)
[97] Wang C H, Shen L F, Zhao Z L, et al. 1.2 MW peak power, all-solid-state picosecond laser with a microchip laser seed and a high gain single-passing bounce geometry amplifier [J]. Optics & Laser Technology, 2016, 85: 14-18.
[98] Gao X Y, Tian Y, Liu Q H, et al. Broadband 2 μm emission characteristics and energy transfer mechanism of Ho3+ doped silicate-germanate glass sensitized by Tm3+ ions [J]. Optics & Laser Technology, 2019, 111: 115-120.
[99] Jiang X Y, Wang Z G, Zhang J G, et al. Thermal management of water-cooled 10 Hz Yb: YAG laser amplifier [J]. High Power Laser and Particle Beams, 2020, 32(1): 011010. (in Chinese)
[100] Martin K I, Clarkson W A, Hanna D C. Self-suppression of axial mode hopping by intracavity second-harmonic generation [J]. Optics Letters, 1997, 22(6): 375-377. doi:  10.1364/OL.22.000375
[101] Cai Y, Gao F, Chen H, et al. Continuous-wave diamond laser with a tunable wavelength in orange–red wavelength band [J]. Optics Communications, 2023, 528: 128985.
[102] Li Muye, Yang Xuezong, Sun Yuxiang, et al. Single-frequency continuous-wave diamond Raman laser ( Invited) [J]. Infrared and Laser Engineering, 2022, 51(6): 20210970. (in Chinese) doi:  10.3788/IRLA20210970