[1] Shannon C E. A mathematical theory of communication [J]. The Bell System Technical Journal, 1948, 27(3): 379-423. doi:  10.1002/j.1538-7305.1948.tb01338.x
[2] Blahut R E. Principles and Practice of Information Theory[M]. US: Addison-Wesley Longman Publishing Co., Inc., 1987.
[3] Barrett H H, Myers K J. Foundations of Image Science[M]. US: John Wiley & Sons, 2013.
[4] Gabor D. IV light and information [J]. Progress in Optics, 1961, 1: 109-153.
[5] Di Francia G T. Degrees of freedom of an image [J]. JOSA A, 1969, 59(7): 799-804. doi:  10.1364/JOSA.59.000799
[6] Ernst A. Contributions to the theory of the microscope and the nature of microscopic vision [J]. Archive for Microscopic Anatomy, 1873, 9: 413-418. (in German
[7] Slepian D. Prolate spheroidal wave functions, Fourier analysis and uncertainty—IV: Extensions to many dimensions; generalized prolate spheroidal functions [J]. Bell System Technical Journal, 1964, 43(6): 3009-3057. doi:  10.1002/j.1538-7305.1964.tb01037.x
[8] Tao Chunkan, Tao Chunkuang. Optical Information Theory[M]. Beijing: Science Press, 1999: 121-129. (in Chinese)
[9] Stern A, Javidi B. Shannon number and information capacity of three-dimensional integral imaging [J]. JOSA A, 2004, 21(9): 1602-1612. doi:  10.1364/JOSAA.21.001602
[10] de Micheli E, Viano G A. Inverse optical imaging viewed as a backward channel communication problem [J]. JOSA A, 2009, 26(6): 1393-1402. doi:  10.1364/JOSAA.26.001393
[11] Abbe E. XV. —The relation of aperture and power in the microscope (continued) [J]. Journal of the Royal Microscopical Society, 1883, 3(6): 790-812. doi:  10.1111/j.1365-2818.1883.tb05956.x
[12] Rayleigh L. XXXI. Investigations in optics, with special reference to the spectroscope [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1879, 8(49): 261-274. doi:  10.1080/14786447908639684
[13] King G W, Emslie A G. Spectroscopy from the point of view of the communication theory [J]. JOSA A, 1951, 41(6): 405-412. doi:  10.1364/JOSA.41.000405
[14] Di Francia G T. Resolving power and information [J]. JOSA A, 1955, 45(7): 497-501. doi:  10.1364/JOSA.45.000497
[15] Lukosz W. Optical systems with resolving powers exceeding the classical limit [J]. JOSA A, 1966, 56(11): 1463-1471. doi:  10.1364/JOSA.56.001463
[16] Bershad N J. Resolution, optical-channel capacity and information theory [J]. JOSA A, 1969, 59(2): 157-163. doi:  10.1364/JOSA.59.000157
[17] Fried D L. Resolution, signal-to-noise ratio, and measurement precision [J]. JOSA A, 1979, 69(3): 399-406. doi:  10.1364/JOSA.69.000399
[18] Cox I J, Sheppard C J R. Information capacity and resolution in an optical system [J]. JOSA A, 1986, 3(8): 1152-1158. doi:  10.1364/JOSAA.3.001152
[19] Kosarev E L. Shannon's superresolution limit for signal recovery [J]. Inverse Problems, 1990, 6(1): 55. doi:  10.1088/0266-5611/6/1/007
[20] Narimanov E. Resolution limit of label-free far-field microscopy [J]. Advanced Photonics, 2019, 1(5): 056003.
[21] Harris J L. Resolving power and decision theory [J]. JOSA A, 1964, 54(5): 606-611. doi:  10.1364/JOSA.54.000606
[22] Helstrom C. The detection and resolution of optical signals [J]. IEEE Transactions on Information Theory, 1964, 10(4): 275-287. doi:  10.1109/TIT.1964.1053702
[23] Helstrom C. Detection and resolution of incoherent objects by a background-limited optical system [J]. JOSA A, 1969, 59(2): 164-175. doi:  10.1364/JOSA.59.000164
[24] Helstrom C. Resolvability of objects from the standpoint of statistical parameter estimation [J]. JOSA A, 1970, 60(5): 659-666. doi:  10.1364/JOSA.60.000659
[25] Fisher R A. On the mathematical foundations of theoretical statistics [J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1922, 222(594-604): 309-368. doi:  10.1098/rsta.1922.0009
[26] Lucy L B. Statistical limits to super resolution [J]. Astronomy and Astrophysics, 1992, 261: 706.
[27] Bettens E, Van Dyck D, Den Dekker A J, et al. Model-based two-object resolution from observations having counting statistics [J]. Ultramicroscopy, 1999, 77(1-2): 37-48. doi:  10.1016/S0304-3991(99)00006-6
[28] Smith S T. Statistical resolution limits and the complexified Cramér-Rao bound [J]. IEEE Transactions on Signal Processing, 2005, 53(5): 1597-1609. doi:  10.1109/TSP.2005.845426
[29] Ram S, Ward E S, Ober R J. Beyond Rayleigh's criterion: A resolution measure with application to single-molecule microscopy [J]. Proceedings of the National Academy of Sciences, 2006, 103(12): 4457-4462. doi:  10.1073/pnas.0508047103
[30] Sentenac A, Guérin C A, Chaumet P C, et al. Influence of multiple scattering on the resolution of an imaging system: A Cramer-Rao analysis [J]. Optics Express, 2007, 15(3): 1340-1347. doi:  10.1364/OE.15.001340
[31] Betzig E, Chichester R J. Single molecules observed by near-field scanning optical microscopy [J]. Science, 1993, 262(5138): 1422-1425. doi:  10.1126/science.262.5138.1422
[32] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy [J]. Journal of Microscopy, 2000, 198(2): 82-87. doi:  10.1046/j.1365-2818.2000.00710.x
[33] Zhang H K, Chen X, Liu W, et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy [J]. Nature Communications, 2019, 10(1): 1-10. doi:  10.1038/s41467-018-07882-8
[34] Vlaardingerbroek M T, Boer J A. Magnetic Resonance Imaging: Theory and Practice[M]. New York: Springer Science & Business Media, 2013.
[35] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy [J]. Optics Letters, 1994, 19(11): 780-782. doi:  10.1364/OL.19.000780
[36] Neupane B, Ligler F S, Wang G. Review of recent developments in stimulated emission depletion microscopy: applications on cell imaging [J]. Journal of Biomedical Optics, 2014, 19(8): 080901. doi:  10.1117/1.JBO.19.8.080901
[37] Harris J L. Diffraction and resolving power [J]. JOSA A, 1964, 54(7): 931-936. doi:  10.1364/JOSA.54.000931
[38] Banham M R, Katsaggelos A K. Digital image restoration [J]. IEEE Signal Processing Magazine, 1997, 14(2): 24-41. doi:  10.1109/79.581363
[39] Wiener N. Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering Applications[M]. New York: John Wiley, 1949.
[40] Sekko E, Thomas G, Boukrouche A. A deconvolution technique using optimal Wiener filtering and regularization [J]. Signal Processing, 1999, 72(1): 23-32. doi:  10.1016/S0165-1684(98)00161-3
[41] Lucy L B. Resolution limits for deconvolved images [J]. The Astronomical Journal, 1992, 104: 1260-1265. doi:  10.1086/116315
[42] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution [J]. Science, 2006, 313(5793): 1642-1645. doi:  10.1126/science.1127344
[43] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature Methods, 2006, 3(10): 793-796. doi:  10.1038/nmeth929
[44] Fales C L, Huck F O, Samms R W. Imaging system design for improved information capacity [J]. Applied Optics, 1984, 23(6): 872-888. doi:  10.1364/AO.23.000872
[45] Huck F O, Fales C L, Halyo N, et al. Image gathering and processing: information and fidelity [J]. JOSA A, 1985, 2(10): 1644-1666. doi:  10.1364/JOSAA.2.001644
[46] Huck F O, Fales C L, McCormick J A, et al. Image-gathering system design for information and fidelity [J]. JOSA A, 1988, 5(3): 285-299. doi:  10.1364/JOSAA.5.000285
[47] Alter-Gartenberg R. Information metric as a design tool for optoelectronic imaging systems [J]. Applied Optics, 2000, 39(11): 1743-1760. doi:  10.1364/AO.39.001743
[48] Carretero L, Fimia A, Beléndez A. Entropy-based study of imaging quality in holographic optical elements [J]. Optics Letters, 1994, 19(17): 1355-1357. doi:  10.1364/OL.19.001355
[49] Chou W C, Neifeld M A, Xuan R. Information-based optical design for binary-valued imagery [J]. Applied Optics, 2000, 39(11): 1731-1742. doi:  10.1364/AO.39.001731
[50] Chi X F, Shi W X, Han C Y, et al. Information-theory based optimizing design methods in sampled-imaging system [J]. Journal of China Institute of Communications, 2002, 23(9): 88-93. (in Chinese)
[51] Han C Y, Yu Y H. Design methods of CCD detection system and the statistical characteristics of sampled targets [J]. Journal of Jilin University (Information Science Edition), 2002, 20(4): 23-26. (in Chinese)
[52] Chi X F, Han C Y, Yi Z D. Matching design methods based on information theory in sampled imaging systems [J]. Acta Optica Sinica, 2003, 23(3): 278-283. (in Chinese)
[53] Chi X F, Han C Y, Yi Z D. Undersampled noise analysis and integral electro-optical design [J]. Opto-Electronic Engineering, 2003, 30(2): 56-59. (in Chinese)
[54] Neifeld M A, Ashok A, Baheti P K. Task-specific information for imaging system analysis [J]. JOSA A, 2007, 24(12): B25-B41. doi:  10.1364/JOSAA.24.000B25
[55] Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91. doi:  10.1109/MSP.2007.914730
[56] Gibson G M, Johnson S D, Padgett M J. Single-pixel imaging 12 years on: a review [J]. Optics Express, 2020, 28(19): 28190-28208. doi:  10.1364/OE.403195
[57] Yuan X, Brady D J, Katsaggelos A K. Snapshot compressive imaging: Theory, algorithms, and applications [J]. IEEE Signal Processing Magazine, 2021, 38(2): 65-88. doi:  10.1109/MSP.2020.3023869
[58] Gao L, Liang J, Li C, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second [J]. Nature, 2014, 516(7529): 74-77. doi:  10.1038/nature14005
[59] Qi D, Zhang S, Yang C, et al. Single-shot compressed ultrafast photography: A review [J]. Advanced Photonics, 2020, 2(1): 014003.
[60] Pavani S R P, Thompson M A, Biteen J S, et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function [J]. Proceedings of the National Academy of Sciences, 2009, 106(9): 2995-2999. doi:  10.1073/pnas.0900245106
[61] Shechtman Y, Sahl S J, Backer A S, et al. Optimal point spread function design for 3D imaging [J]. Physical Review Letters, 2014, 113(13): 133902. doi:  10.1103/PhysRevLett.113.133902
[62] von Diezmann A, Shechtman Y, Moerner W E. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking [J]. Chemical Reviews, 2017, 117(11): 7244-7275. doi:  10.1021/acs.chemrev.6b00629
[63] Buzug T M. Computed Tomography[M]//Springer Handbook of Medical Technology. Heidelberg: Springer, 2011: 311-342.
[64] Descour M, Dereniak E. Computed-tomography imaging spectrometer: experimental calibration and reconstruction results [J]. Applied Optics, 1995, 34(22): 4817-4826. doi:  10.1364/AO.34.004817
[65] Ng R, Levoy M, Brédif M, et al. Light field photography with a hand-held plenoptic camera[D]. US: Stanford University, 2005.
[66] Strekalov D V, Sergienko A V, Klyshko D N, et al. Observation of two-photon ''ghost'' interference and diffraction [J]. Physical Review Letters, 1995, 74(18): 3600. doi:  10.1103/PhysRevLett.74.3600
[67] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement [J]. Physical Review A, 1995, 52(5): R3429. doi:  10.1103/PhysRevA.52.R3429
[68] Bennink R S, Bentley S J, Boyd R W, et al. Quantum and classical coincidence imaging [J]. Physical Review Letters, 2004, 92(3): 033601. doi:  10.1103/PhysRevLett.92.033601
[69] Cheng J, Han S. Incoherent coincidence imaging and its applicability in X-ray diffraction [J]. Physical Review Letters, 2004, 92(9): 093903. doi:  10.1103/PhysRevLett.92.093903
[70] Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: Comparing entanglement and classical correlation [J]. Physical Review Letters Series A. Mathematical and Physical Sciences, 2004, 93(9): 093602. doi:  10.1103/PhysRevLett.93.093602
[71] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints [J]. Applied Physics Letters, 2012, 101(14): 141123. doi:  10.1063/1.4757874
[72] Erkmen B I. Computational ghost imaging for remote sensing [J]. JOSA A, 2012, 29(5): 782-789. doi:  10.1364/JOSAA.29.000782
[73] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixel detectors [J]. Science, 2013, 340(6134): 844-847. doi:  10.1126/science.1234454
[74] Gong W, Zhao C, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint [J]. Scientific Reports, 2016, 6(1): 26133.
[75] Liu Z, Tan S, Wu J, et al. Spectral camera based on ghost imaging via sparsity constraints [J]. Scientific Reports, 2016, 6(1): 25718. doi:  10.1038/s41598-016-0001-8
[76] Wang Y, Suo J, Fan J, et al. Hyperspectral computational ghost imaging via temporal multiplexing [J]. IEEE Photonics Technology Letters, 2015, 28(3): 288-291.
[77] Shi D, Hu S, Wang Y. Polarimetric ghost imaging [J]. Optics Letters, 2014, 39(5): 1231-1234. doi:  10.1364/OL.39.001231
[78] Chu C, Liu S, Liu Z, et al. Spectral polarization camera based on ghost imaging via sparsity constraints [J]. Applied Optics, 2021, 60(16): 4632-4638. doi:  10.1364/AO.417022
[79] Yu H, Lu R, Han S, et al. Fourier-transform ghost imaging with hard X-rays [J]. Physical Review Letters, 2016, 117(11): 113901. doi:  10.1103/PhysRevLett.117.113901
[80] Pelliccia D, Rack A, Scheel M, et al. Experimental X-Ray ghost imaging [J]. Physical Review Letters, 2016, 117(11): 113902. doi:  10.1103/PhysRevLett.117.113902
[81] Li W, Tong Z, Xiao K, et al. Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints [J]. Optica, 2019, 6(12): 1515-1523. doi:  10.1364/OPTICA.6.001515
[82] Jin X, Wang X Y, Du D Y, et al. Progress and prospect of scattering imaging [J]. Laser and Optoelectronics Progress, 2021, 58(18): 1811002. (in Chinese) doi:  10.3788/LOP202158.1811002
[83] Faccio D, Velten A, Wetzstein G. Non-line-of-sight imaging [J]. Nature Reviews Physics, 2020, 2(6): 318-327. doi:  10.1038/s42254-020-0174-8
[84] Mandel L, Wolf E. Optical Coherence and Quantum Optics[M]. UK: Cambridge University Press, 1995: 41-65.
[85] Zernike F. How I discovered phase contrast [J]. Science, 1955, 121(3141): 345-349. doi:  10.1126/science.121.3141.345
[86] Gabor D. A new microscopic principle [J]. Nature, 1948, 161: 777-778. doi:  10.1038/161777a0
[87] Gabor D. Microscopy by reconstructed wave-fronts [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1949, 197(1051): 454-487.
[88] Miao J, Charalambous P, Kirz J, et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens [J]. Nature, 1999, 400(6742): 342-344. doi:  10.1038/22498
[89] Brown R H, Twiss R Q. Correlation between photons in two coherent beams of light [J]. Nature, 1956, 177(4497): 27-29. doi:  10.1038/177027a0
[90] Zhang M, Wei Q, Shen X, et al. Lensless Fourier-transform ghost imaging with classical incoherent light [J]. Physical Review A, 2007, 75(2): 021803. doi:  10.1103/PhysRevA.75.021803
[91] Gong W, Han S. Phase-retrieval ghost imaging of complex-valued objects [J]. Physical Review A, 2010, 82(2): 023828. doi:  10.1103/PhysRevA.82.023828
[92] Zhang D J, Tang Q, Wu T F, et al. Lensless ghost imaging of a phase object with pseudo-thermal light [J]. Applied Physics Letters, 2014, 104(12): 121113. doi:  10.1063/1.4869959
[93] Song X B, Xu D Q, Wang H B, et al. Experimental observation of one-dimensional quantum holographic imaging [J]. Applied Physics Letters, 2013, 103(13): 131111. doi:  10.1063/1.4822423
[94] Mandel L, Sudarshan E C G, Wolf E. Theory of photoelectric detection of light fluctuations [J]. Proceedings of the Physical Society, 1964, 84(3): 435. doi:  10.1088/0370-1328/84/3/313
[95] Mandel L, Wolf E. Optical Coherence and Quantum Optics[M]. UK: Cambridge University Press, 1995: 438-464.
[96] Kolaczyk E D, Nowak R D. Multiscale likelihood analysis and complexity penalized estimation [J]. The Annals of Statistics, 2004, 32(2): 500-527.
[97] Makitalo M, Foi A. Optimal inversion of the Anscombe transformation in low-count Poisson image denoising [J]. IEEE Transactions on Image Processing, 2010, 20(1): 99-109.
[98] Han S, Yu H, Shen X, et al. A review of ghost imaging via sparsity constraints [J]. Applied Sciences, 2018, 8(8): 1379. doi:  10.3390/app8081379
[99] Pan L, Wang Y, Deng C, et al. Micro-Doppler effect based vibrating object imaging of coherent detection GISC lidar [J]. Optics Express, 2021, 29(26): 43022-43031. doi:  10.1364/OE.436105
[100] Gong W L, Sun J F, Deng C J, et al. Research progress on single-pixel imaging Lidar via coherent detection [J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011003. (in Chinese)
[101] Giglio M, Carpineti M, Vailati A. Space intensity correlations in the near field of the scattered light: A direct measurement of the density correlation function $g\left( r \right)$ [J]. Physical Review Letters, 2000, 85(7): 1416-1419. doi:  10.1103/PhysRevLett.85.1416
[102] Cerbino R, Peverini L, Potenza M A C, et al. X-ray-scattering information obtained from near-field speckle [J]. Nature Physics, 2008, 4(3): 238-243. doi:  10.1038/nphys837
[103] Tan Z, Yu H, Lu R, et al. Non-locally coded Fourier-transform ghost imaging [J]. Optics Express, 2019, 27(3): 2937-2948. doi:  10.1364/OE.27.002937
[104] Zhu R, Yu H, Lu R, et al. Spatial multiplexing reconstruction for Fourier-transform ghost imaging via sparsity constraints [J]. Optics Express, 2018, 26(3): 2181-2190. doi:  10.1364/OE.26.002181
[105] Hu C, Zhu R, Yu H, et al. Correspondence Fourier-transform ghost imaging [J]. Physical Review A, 2021, 103(4): 043717. doi:  10.1103/PhysRevA.103.043717
[106] Yonina C Eldar, Gitta Kutyniok. Compressed Sensing: Theory and Applications[M]. UK: Cambridge University Press, 2012.
[107] Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi:  10.1109/TIT.2006.871582
[108] Candes E J, Tao T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215. doi:  10.1109/TIT.2005.858979
[109] Li E R, Chen M L, Gong W L, et al. Mutual information of ghost imaging systems [J]. Acta Optica Sinica, 2013, 33(12): 1211003. (in Chinese) doi:  10.3788/AOS201333.1211003
[110] Xu X, Li E, Shen X, et al. Optimization of speckle patterns in ghost imaging via sparse constraints by mutual coherence minimization [J]. Chinese Optics Letters, 2015, 13(7): 071101. doi:  10.3788/COL201513.071101
[111] Czajkowski K M, Pastuszczak A, Kotyński R. Single-pixel imaging with Morlet wavelet correlated random patterns [J]. Scientific Reports, 2018, 8(1): 1-8.
[112] Hu C, Tong Z, Liu Z, et al. Optimization of light fields in ghost imaging using dictionary learning [J]. Optics Express, 2019, 27(20): 28734-28749. doi:  10.1364/OE.27.028734
[113] Liu B, Wang F, Chen C, et al. Self-evolving ghost imaging [J]. Optica, 2021, 8(10): 1340-1349. doi:  10.1364/OPTICA.424980
[114] Tong Z, Liu Z, Wang J, et al. Spatial resolution limit of ghost imaging camera via sparsity constraints-break Rayleigh's criterion based on the discernibility in high-dimensional light field space [J]. arXiv e-prints, 2020, arXiv: 2004.00135.
[115] Tropp J A. Greed is good: algorithmic results for sparse approximation [J]. IEEE Transactions on InformationTheory, 2004, 50(10): 2231-2242.
[116] Tong Z, Liu Z, Hu C, et al. Preconditioned deconvolution method for high-resolution ghost imaging [J]. Photonics Research, 2021, 9(6): 1069-1077. doi:  10.1364/PRJ.420326
[117] Chen H, Shi J, Liu X, et al. Single-pixel non-imaging object recognition by means of Fourier spectrum acquisition [J]. Optics Communications, 2018, 413: 269-275. doi:  10.1016/j.optcom.2017.12.047
[118] Zhai X, Cheng Z, Wei Y, et al. Compressive sensing ghost imaging object detection using generative adversarial networks [J]. Optical Engineering, 2019, 58(1): 013108.
[119] Li Y, Shi J, Sun L, et al. Single-pixel salient object detection via discrete cosine spectrum acquisition and deep learning [J]. IEEE Photonics Technology Letters, 2020, 32(21): 1381-1384. doi:  10.1109/LPT.2020.3026472
[120] Zhang Z, Li X, Zheng S, et al. Image-free classification of fast-moving objects using “learned” structured illumination and single-pixel detection [J]. Optics Express, 2020, 28(9): 13269-13278. doi:  10.1364/OE.392370
[121] Cao J N, Zuo Y H, Wang H H, et al. Single-pixel neural network object classification of sub-Nyquist ghost imaging [J]. Applied Optics, 2021, 60(29): 9180-9187. doi:  10.1364/AO.438392
[122] Liu X F, Yao X R, Lan R M, et al. Edge detection based on gradient ghost imaging [J]. Optics Express, 2015, 23(26): 33802-33811. doi:  10.1364/OE.23.033802
[123] Wang L, Zou L, Zhao S. Edge detection based on subpixel-speckle-shifting ghost imaging [J]. Optics Communications, 2018, 407: 181-185. doi:  10.1016/j.optcom.2017.09.002
[124] Sun S, Gu J H, Lin H Z, et al. Gradual ghost imaging of moving objects by tracking based on cross correlation [J]. Optics Letters, 2019, 44(22): 5594-5597. doi:  10.1364/OL.44.005594
[125] Yang D, Chang C, Wu G, et al. Compressive ghost imaging of the moving object using the low-order moments [J]. Applied Sciences, 2020, 10(21): 7941. doi:  10.3390/app10217941
[126] Barbastathis G, Ozcan A, Situ G. On the use of deep learning for computational imaging [J]. Optica, 2019, 6(8): 921-943. doi:  10.1364/OPTICA.6.000921
[127] Rivenson Y, Wu Y, Ozcan A. Deep learning in holography and coherent imaging [J]. Light: Science & Applications, 2019, 8(1): 1-8.