[1] Chen F, Brown G M, Song M. Overview of three-dimensional shape measurement using optical methods [J]. Optical Engineering, 2000, 39(1): 10−22. doi:  10.1117/1.602438
[2] Nayar S K, Ikeuchi K, Kanade T. Shape from interreflections [J]. International Journal of Computer Vision, 1991, 6(3): 173−195. doi:  10.1007/BF00115695
[3] Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition [J]. Nature Communications, 2015, 6: 6225. doi:  10.1038/ncomms7225
[4] Zhao H, Xu Y, Jiang H, et al. 3D shape measurement in the presence of strong interreflections by epipolar imaging and regional fringe projection [J]. Optics Express, 2018, 26(6): 7117−7131. doi:  10.1364/OE.26.007117
[5] Xu Y, Zhao H, Jiang H, et al. High-accuracy 3D shape measurement of translucent objects by fringe projection profilometry [J]. Optics Express, 2019, 27(13): 15118−15130.
[6] Nayar S K, Krishnan G, Grossberg M D, et al. Fast separation of direct and global components of a scene using high frequency illumination [J]. ACM Transactions on Graphics, 2006, 25(3): 935−944. doi:  10.1145/1141911.1141977
[7] Gupta M, Nayar S K. Micro phase shifting[C]//IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2012: 813-820.
[8] Wang J, Zhang X. 3D measurement method of Gray code structured light under interference of reflected light [J]. Optical Technique, 2018, 44(1): 69−74. (in Chinese)
[9] Chen T, Lensch H P A, Fuchs C, et al. Polarization and phase-shifting for 3D scanning of translucent objects[C]//IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2007: 1-8.
[10] Sen P, Chen B, Garg G, et al. Dual photography[C]//ACM SIGGRAPH, ACM, 2005: 745-755.
[11] Zhang Z, Wang X, Zheng G, et al. Hadamard single-pixel imaging versus Fourier single-pixel imaging [J]. Optics Express, 2017, 25(16): 19619−19639. doi:  10.1364/OE.25.019619
[12] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging [J]. Nature Photonics, 2019, 13: 13−20. doi:  10.1038/s41566-018-0300-7
[13] Bian L, Suo J, Situ G, et al. Multispectral imaging using a single bucket detector [J]. Scientific Reports, 2016, 6(24752): 1−7.
[14] Hahn J, Debes C, Leigsnering M, et al. Compressive sensing and adaptive direct sampling in hyperspectral imaging [J]. Digital Signal Processing, 2014(26): 113−126.
[15] Wang Y, Suo J, Fan J, et al. Hyperspectral computational ghost imaging via temporal multiplexing [J]. IEEE Photonics Technology Letters, 2016(28): 288−291.
[16] Radwell N, Mitchell K J, Gibson G M, et al. Single-pixel infrared and visible microscope [J]. Optica, 2014, 1(5): 285−289. doi:  10.1364/OPTICA.1.000285
[17] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing [J]. Applied Physics Letter, 2008, 93(12): 121105. doi:  10.1063/1.2989126
[18] Watts C M, Shrekenhamer D, Montoya J, et al. Terahertz compressive imaging with metamaterial spatial light modulators [J]. Nature Photonics, 2014, 8: 605−609. doi:  10.1038/nphoton.2014.139
[19] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixel detector [J]. Science, 2013, 340(6134): 844−847. doi:  10.1126/science.1234454
[20] Sun M, Edgar M, Gibson G, et al. Single-pixel three-dimensional imaging with time-based depth resolution [J]. Nature Communications, 2016, 7: 12010. doi:  10.1038/ncomms12010
[21] Ryczkowski P, Barbier M, Friberg A T, et al. Ghost imaging in the time domain [J]. Nature Photonics, 2016, 10: 167−170. doi:  10.1038/nphoton.2015.274
[22] Chen H, Weng Z, Liang Y, et al. High speed single-pixel imaging via time domain compressive sampling[C]//Conference on Lasers Electro-Opt, OSA, 2014: 132.
[23] Devaux F, Moreau P A, Denis S, et al. Computational temporal ghost imaging [J]. Optica, 2016, 3(7): 698−701. doi:  10.1364/OPTICA.3.000698
[24] Jiang H, Zhai H, Xu Y, et al. 3D shape measurement of translucent objects based on Fourier single-pixel imaging in projector-camera system [J]. Optics Express, 2019, 27(23): 33564−33574. doi:  10.1364/OE.27.033564