[1] Pack M V, Armstrong D J, Smith A V. Measurement of the χ(2) tensors of KTiOPO4, KTiOAsO4, RbTiOPO4, and RbTiOAsO4 crystals [J]. Applied Optics, 2004, 43(16): 3319-3323. doi:  https://doi.org/10.1364/AO.43.003319
[2] Gao Z L, Sun Y X, Yin X, et al. Growth and electric-elastic properties of KTiOAsO4 single crystal [J]. Journal of Applied Physics, 2010, 108(2): 024103. doi:  10.1063/1.3446042
[3] Bai Fen, Wang Qingpu, Liu Zhaojun, et al. Comparison of signal-resonant and idler-resonant KTA-SROs [J]. Chinese Optics Letters, 2016, 14(7): 071402. doi:  10.3788/COL201614.071402
[4] Duan Y M, Zhu H Y, Xu C W, et al. Compact self-cascaded KTA-OPO for 2.6 μm laser generation [J]. Optics Express, 2016, 24(23): 26529-26535. doi:  10.1364/OE.24.026529
[5] 卞进田, 孔辉, 徐海萍, 等. 3.5 μm KTiOAsO4光参量振荡器温度调谐特性[J]. 中国激光, 2021, 48(4): 0401015. doi:  10.3788/CJL202148.0401015

Bian Jintian, Kong Hui, Xu Haiping, et al. Temperature tuning properties of 3.5-μm KTiOAsO4 optical parametric oscillator [J]. Chinese Journal of Lasers, 2021, 48(4): 0401015. (in Chinese) doi:  10.3788/CJL202148.0401015
[6] Meng Jun, Li Chen, Cong Zhenhua, et al. Investigations on beam quality improvement of an NCPM-KTA-based high energy optical parametric oscillator using an unstable resonator with a Gaussian reflectivity mirror [Invited] [J]. Chinese Optics Letters, 2022, 20(9): 091401. doi:  10.3788/COL202220.091401
[7] Watson G H. Polarized Raman spectra of KTiOAsO4 and isomorphic nonlinear-optical crystals [J]. Journal of Raman Spectroscopy, 1991, 22(11): 705-713. doi:  10.1002/jrs.1250221116
[8] Zhu H Y, Shao Z H, Wang H Y, et al. Multi-order Stokes output based on intra-cavity KTiOAsO4 Raman crystal [J]. Optics Express, 2014, 22(16): 19662-19667. doi:  10.1364/OE.22.019662
[9] Huang Y J, Chen Y F, Chen W D, et al. Dual-wavelength eye-safe Nd: YAP Raman laser [J]. Optics Letters, 2015, 40(15): 3560-3563. doi:  10.1364/OL.40.003560
[10] 张喜梅, 陈思梦, 施沈城, 周青青, 段延敏, 朱海永. 级联Nd: GdVO4自拉曼1309 nm激光性能研究[J]. 红外与激光工程, 2019, 48(11): 1105002 . doi:  10.3788/IRLA201948.1105002

Zhang Ximei, Chen Simeng, Shi Shencheng, et al. Study on the performance of cascaded Nd: GdVO4 self-Raman laser at 1 309 nm [J]. Infrared and Laser Engineering, 2019, 48(11): 1105002. (in Chinese) doi:  10.3788/IRLA201948.1105002
[11] 孙冰, 丁欣, 姜鹏波, 白云涛, 禹宣伊, 王靖博, 赵蕾, 刘阳, 李腾腾, 吴亮, 张贵忠, 姚建铨. 波长锁定878.6 nm LD调制泵浦Nd: YVO4自拉曼激光器[J]. 红外与激光工程, 2021, 50(12): 20200227. doi:  10.3788/IRLA20200227

Sun Bing, Ding Xin, Jiang Pengbo, et al. Efficient wavelength-locked 878.6 nm diode-modulated-pumped Nd: YVO4 self-Raman laser [J]. Infrared and Laser Engineering, 2021, 50(12): 20200227. (in Chinese) doi:  10.3788/IRLA20200227
[12] Duan Y M, Sun Y L, Zhu H Y, et al. YVO4 cascaded Raman laser for five-visible-wavelength switchable emission [J]. Optics Letters, 2020, 45(9): 2564-2567.
[13] 白振旭, 陈晖, 张展鹏, 等. 百瓦级1.2/1.5 μm双波长金刚石拉曼激光器(特邀)[J]. 红外与激光工程, 2021, 50(12): 20210685. doi:  10.3788/IRLA20210685

Bai Zhenxu, Chen Hui, Zhang Zhanpeng, et al. Hundred-watt dual-wavelength diamond Raman laser at 1.2/1.5 μm (Invited) [J]. Infrared and Laser Engineering, 2021, 50(12): 20210685. (in Chinese) doi:  10.3788/IRLA20210685
[14] Yang Ce, Chen Meng, Ma Ning, et al. Picosecond multi-pulse burst pump KGW infrared multi-wavelength Raman laser [J]. Infrared and Laser Engineering, 2020, 49(11): 20200044. doi:  10.3788/IRLA20200044
[15] Liu Z J, Wang Q P, Zhang X Y, et al. Coexistent optical parametric oscillation and stimulated Raman scattering in KTiOAsO4 [J]. Optics Express, 2008, 16(21): 17092-17097.
[16] Zhu H Y, Guo J H, Duan Y M, et al. Efficient 1.7 μm light source based on KTA-OPO derived by Nd: YVO4 self-Raman laser [J]. Optics Letters, 2018, 43(2): 345-348.
[17] Huang H T, Wang H, Wang S Q, et al. Designable cascaded nonlinear optical frequency conversion integrating multiple nonlinear interactions in two KTiOAsO4 crystals [J]. Optics Express, 2018, 26(2): 642-650.
[18] Liu Z J, Wang Q P, Zhang X Y, et al. 1120 nm second-Stokes generation in KTiOAsO4 [J]. Laser Physics Letters, 2008, 6(2): 121-124.
[19] Lan W X, Wang Q P, Liu Z J, et al. A diode end-pumped passively Q-switched Nd: YAG/KTA Raman laser [J]. Optik, 2013, 124(24): 6866-6868. doi:  10.1016/j.ijleo.2013.05.154
[20] Duan Y M, Zhu H Y, Wang H Y, et al. Comparison of 1.15 μm Nd: YAG\KTA Raman lasers with 234 and 671 cm-1 shifts [J]. Optics Express, 2016, 24(5): 5565-5571. doi:  10.1364/OE.24.005565
[21] Mao W J, Zhang D, Lu H Q, et al. Compact passively Q-switched KTA self-frequency doubled Raman laser with 671 cm−1 shift [J]. Optics and Laser Technology, 2022, 156: 108619. doi:  10.1016/j.optlastec.2022.108619
[22] Sheng Q, Lee A, Spence D, et al. Wavelength tuning and power enhancement of an intracavity Nd: GdVO4-BaWO4 Raman laser using an etalon [J]. Optics Express, 2018, 26(24): 32145-32155. doi:  10.1364/OE.26.032145
[23] Sheng Q, Li R, Lee A, et al. A single-frequency intracavity Raman laser [J]. Optics Express, 2019, 27(6): 8540-8553. doi:  10.1364/OE.27.008540
[24] Centurion P, Noriega A. Fat preserving by laser 1210-nm [J]. Journal of Cosmetic and Laser Therapy, 2013, 15(1): 2-12. doi:  10.3109/14764172.2012.758376
[25] Philandrianos C, Bertrand B, Andrac-Meyer L, et al. Treatment of keloid scars with a 1210-nm diode laser in an animal model [J]. Lasers in Surgery and Medicine, 2015, 47: 798-806.
[26] Liu Z J, Wang Q P, Zhang, X Y, et al. Self-frequency-doubled KTiOAsO4 Raman laser emitting at 573 nm [J]. Optics Letters, 2009, 34(14): 2183-2185. doi:  10.1364/OL.34.002183