[1] Park J, Ahn Y H, Ruiz-Vargas C. Imaging of photocurrent generation and collection in single-layer graphene[J]. Nano Letters, 2009, 9(5):1742-1746.
[2] Xia F N, Mueller T, Golizadeh-Mojarad R, et al. Photocurrent imaging and efficient photon detection in a graphene transistor[J]. Nano Letters, 2009, 9(3):1039-1044.
[3] Xia F, Mueller T, Lin Y M, et al. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 2009, 4(12):839-843.
[4] Ryzhii V, Ryzhii M. Graphene bilayer field-effect phototransistor for terahertz and infrared detection[J]. Physical Review B, 2009, 79(24):245311.
[5] Bao W, Jing L, Velasco J, Jr, et al. Stacking-dependent band gap and quantum transport in trilayer graphene[J]. Nature Physics, 2011, 7(12):948-952.
[6] Sonde S, Giannazzo F, Raineri V, et al. Electrical properties of the graphene/4H-SiC (0001) interface probed by scanning current spectroscopy[J]. Physical Review B, 2009, 80(24):241406.
[7] Xie C, Wang Y, Zhang Z X, et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications[J]. Nano Today, 2018, 19:41-83.
[8] Goossens S, Navickaite G, Monasterio C, et al. Broadband image sensor array based on graphene-CMOS integration[J]. Nature Photonics, 2017, 11(6):366-371.
[9] Xia F, Mueller T, Golizadeh-Mojarad R, et al. Photocurrent imaging and efficient photon detection in a graphene transistor[J]. Nano Letters, 2009, 9(3):1039-1044.
[10] Drain C M, Christensen B, Mauzerall D. Photogating of ionic currents across a lipid bilayer[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(18):6959-6962.
[11] Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6):363-368.
[12] Fang H, Hu W. Photogating in low dimensional photodetectors[J]. Advanced Science, 2017, 4(12):1700323.
[13] Guo X, Wang W, Nan H, et al. High-performance graphene photodetector using interfacial gating[J]. Optica, 2016, 3(10):1066-1070.
[14] Lemme M C, Koppens F H L, Falk A L, et al. Gate-activated photoresponse in a graphene p-n junction[J]. Nano Letters, 2011, 11(10):4134-4137.
[15] Xu X, Gabor N M, Alden J S, et al. Photo-thermoelectric effect at a graphene interface junction[J]. Nano Letters, 2010, 10(2):562-566.
[16] Gabor N M, Song J C W, Ma Q, et al. Hot carrier-assisted intrinsic photoresponse in graphene[J]. Science, 2011, 334(6056):648-652.
[17] Song J C W, Rudner M S, Marcus C M, et al. Hot carrier transport and photocurrent response in graphene[J]. Nano Letters, 2011, 11(11):4688-4692.
[18] Sun D, Aivazian G, Jones A M, et al. Ultrafast hot-carrier-dominated photocurrent in graphene[J]. Nature Nanotechnology, 2012, 7(2):114-118.
[19] Rogalski A, Kopytko M, Martyniuk P. Two-dimensional infrared and terahertz detectors:Outlook and status[J]. Applied Physics Reviews, 2019, 6(2):021316.
[20] Piscanec S, Lazzeri M, Mauri F, et al. Kohn anomalies and electron-phonon interactions in graphite[J]. Physical Review Letters, 2004, 93(18):185503.
[21] Lazzeri M, Piscanec S, Mauri F, et al. Electron transport and hot phonons in carbon nanotubes[J]. Physical Review Letters, 2005, 95(23):236802.
[22] Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications[J]. ACS Nano, 2014, 8(2):1086-1101.
[23] Bistritzer R, MacDonald A H. Electronic cooling in graphene[J]. Physical Review Letters, 2009, 102(20):206410.
[24] Tse W K, Das Sarma S. Energy relaxation of hot dirac fermions in graphene[J]. Physical Review B, 2009, 79(23):235406.
[25] Song J C W, Reizer M Y, Levitov L S. Disorder-assisted electron-phonon scattering and cooling pathways in graphene[J]. Physical Review Letters, 2012, 109(10):106602.
[26] Graham M W, Shi S F, Ralph D C, et al. Photocurrent measurements of supercollision cooling in graphene[J]. Nature Physics, 2013, 9(2):103-108.
[27] Betz A C, Jhang S H, Pallecchi E, et al. Supercollision cooling in undoped graphene[J]. Nature Physics, 2013, 9(2):109-112.
[28] Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1):109-162.
[29] Koppens F H, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 2014, 9(10):780-793.
[30] Xia F, Yan H, Avouris P. The interaction of light and graphene:Basics, devices, and applications[J]. Proceedings of the IEEE, 2013, 101(7):1717-1731.
[31] Tissot J L, Trouilleau C, Fieque B, et al. Uncooled microbolometer detector:Recent developments at ulis[J]. Opto-Electronics Review, 2006, 14(1):25-32.
[32] Soref R A. Silicon-based optoelectronics[J]. Proceedings of the IEEE, 1993, 81(12):1687-1706.
[33] Richards P L. Bolometers for infrared and millimeter waves[J]. Journal of Applied Physics, 1994, 76(1):1-24.
[34] Wang X, Cheng Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photo-detectors[J]. Nature Photonics, 2013, 7(11):888-891.
[35] Voisin C, Placais B. Hot carriers in graphene preface[J]. Journal of Physics-Condensed Matter, 2015, 27(16):160301.
[36] Brida D, Tomadin A, Manzoni C, et al. Ultrafast collinear scattering and carrier multiplication in graphene[J]. Nature Communications, 2013, 4:1987.
[37] Breusing M, Kuehn S, Winzer T, et al. Ultrafast nonequilibrium carrier dynamics in a single graphene layer[J]. Physical Review B, 2011, 83(15):153410.
[38] Rodriguez-Nieva J F, Dresselhaus M S, Levitov L S. Thermionic emission and negative dI/dV in photoactive graphene heterostructures[J]. Nano Letters, 2015, 15(3):1451-1456.
[39] Liang S J, Ang L K. Electron thermionic emission from graphene and a thermionic energy converter[J]. Physical Review Applied, 2015, 3(1):014002.
[40] Massicotte M, Schmidt P, Vialla F, et al. Photo-thermionic effect in vertical graphene heterostructures[J]. Nature Communications, 2016, 7:12174.
[41] Kim R, Perebeinos V, Avouris P. Relaxation of optically excited carriers in graphene[J]. Physical Review B, 2011, 84(7):075449.
[42] Freitag M, Low T, Xia F, et al. Photoconductivity of biased graphene[J]. Nature Photonics, 2013, 7(1):53-59.
[43] Freitag M, Low T, Avouris P. Increased responsivity of suspended graphene photodetectors[J]. Nano Letters, 2013, 13(4):1644-1648.
[44] Yan J, Kim M H, Elle J A, et al. Dual-gated bilayer graphene hot-electron bolometer[J]. Nature Nanotechnology, 2012, 7(7):472-478.
[45] Furchi M, Urich A, Pospischil A, et al. Microcavity-integrated graphene photodetector[J]. Nano Letters, 2012, 12(6):2773-2777.
[46] Pospischil A, Humer M, Furchi M M, et al. CMOS-compatible graphene photodetector covering all optical communication bands[J]. Nature Photonics, 2013, 7(11):892-896.
[47] Gan X, Shiue R J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity[J]. Nature Photonics, 2013, 7(11):883-887.
[48] Lee I H, Yoo D, Avouris P, et al. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy[J]. Nature Nanotechnology, 2019, 14(4):313-319.
[49] Ni Z, Ma L, Du S, et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors[J]. ACS Nano, 2017, 11(10):9854-9862.
[50] Sun T, Wang Y, Yu W, et al. Flexible broadband graphene photodetectors enhanced by plasmonic Cu3-xP colloidal nanocrystals[J]. Small, 2017, 13(42):UNSP 1701881.
[51] Zhao B, Zhao J M, Zhang Z M. Enhancement of near-infrared absorption in graphene with metal gratings[J]. Applied Physics Letters, 2014, 105(3):031905.
[52] Yao Y, Shankar R, Rauter P, et al. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection[J]. Nano Letters, 2014, 14(7):3749-3754.
[53] Fang Z, Liu Z, Wang Y, et al. Graphene-antenna sandwich photodetector[J]. Nano Letters, 2012, 12(7):3808-3813.
[54] Azar N S, Shrestha V R, Crozier K B. Bull's eye grating integrated with optical nanoantennas for plasmonic enhancement of graphene long-wave infrared photodetectors[J]. Applied Physics Letters, 2019, 114(9):091108.
[55] Zhang Y, Liu T, Meng B, et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nature Communications, 2013, 4:1811.
[56] Liu Y, Gong T, Zheng Y, et al. Ultra-sensitive and plasmon-tunable graphene photodetectors for micro-spectrometry[J]. Nanoscale, 2018, 10(42):20013-20019.
[57] Nikitskiy I, Goossens S, Kufer D, et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor[J]. Nature Communications, 2016, 7:11954.
[58] Chen Z, Li X, Wang J, et al. Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity[J]. ACS Nano, 2017, 11(1):430-437.
[59] Sassi U, Parret R, Nanot S, et al. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance[J]. Nature Communications, 2017, 8:14311.
[60] Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010, 4(5):297-301.
[61] Urich A, Unterrainer K, Mueller T. Intrinsic response time of graphene photodetectors[J]. Nano Letters, 2011, 11(7):2804-2808.
[62] Schuler S, Schall D, Neumaier D, et al. Controlled generation of a p-n junction in a waveguide integrated graphene photodetector[J]. Nano Letters, 2016, 16(11):7107-7112.
[63] Schall D, Porschatis C, Otto M, et al. Graphene photodetectors with a bandwidth >76 GHz fabricated in a 6″ wafer process line[J]. Journal of Physics D-Applied Physics, 2017, 50(12):124004.
[64] Li Z Q, Henriksen E A, Jiang Z, et al. Dirac charge dynamics in graphene by infrared spectroscopy[J]. Nature Physics, 2008, 4(7):532-535.
[65] Liu C H, Chang Y C, Norris T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature[J]. Nature Nanotechnology, 2014, 9(4):273-278.
[66] Herring P K, Hsu A L, Gabor N M, et al. Photoresponse of an electrically tunable ambipolar graphene infrared thermocouple[J]. Nano Letters, 2014, 14(2):901-907.
[67] Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6):363-368.
[68] Roy K, Padmanabhan M, Goswami S, et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices[J]. Nature Nanotechnology, 2013, 8(11):826-830.
[69] Guo N, Hu W, Jiang T, et al. High-quality infrared imaging with graphene photodetectors at room temperature[J]. Nanoscale, 2016, 8(35):16065-16072.
[70] Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature Materials, 2012, 11(10):865-871.
[71] Qin H, Sun J, Liang S, et al. Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor[J]. Carbon, 2017, 116:760-765.
[72] An X, Liu F, Jung Y J, et al. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection[J]. Nano Letters, 2013, 13(3):909-916.
[73] Spirito D, Coquillat D, De Bonis S L, et al. High performance bilayer-graphene terahertz detectors[J]. Applied Physics Letters, 2014, 104(6):061111.
[74] Mittendorff M, Winnerl S, Kamann J, et al. Ultrafast graphene-based broadband THz detector[J]. Applied Physics Letters, 2013, 103(2):021113.
[75] Vabbina P, Choudhary N, Chowdhury A A, et al. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene schottky junction[J]. ACS Applied Materials & Interfaces, 2015, 7(28):15206-15213.
[76] Long M, Liu E, Wang P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters, 2016, 16(4):2254-2259.
[77] Zomer P J, Dash S P, Tombros N, et al. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride[J]. Applied Physics Letters, 2011, 99(23):232104.
[78] Gammelgaard L, Caridad J M, Cagliani A, et al. Graphene transport properties upon exposure to PMMA processing and heat treatments[J]. 2D Materials, 2014, 1(3):035005.