[1] Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems [J]. Nature Nanotechnology, 2014, 9(10): 780-793.
[2] Lee E J H, Balasubramanian K, Weitz R T, et al. Contact and edge effects in graphene devices [J]. Nature Nanotechnology, 2008, 3(8): 486-490.
[3] Gabor N M, Song J C W, Ma Q, et al. Hot carrier-assisted intrinsic photoresponse in graphene [J]. Science, 2011, 334(6056): 648-652.
[4] Mueller T, Xia F, Freitag M, et al. Role of contacts in graphene transistors: A scanning photocurrent study [J]. Physical Review B, 2009, 79(24): 245430.
[5] Echtermeyer T J, Nene P S, Trushin M, et al. Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors [J]. Nano Letters, 2014, 14(7): 3733-3742.
[6] Lee H, Paeng K, Kim I S. A review of doping modulation in graphene [J]. Synthetic Metals, 2018, 244: 36-47.
[7] Guo N, Hu W, Jiang T, et al. High-quality infrared imaging with graphene photodetectors at room temperature [J]. Nanoscale, 2016, 8(35): 16065-16072.
[8] Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications [J]. Nature Photonics, 2010, 4(5): 297-301.
[9] Cai X, Suess R J, Drew H D, et al. Pulsed near-IR photoresponse in a bi-metal contacted graphene photodetector [J]. Scientific Reports, 2015, 5(1): 14803.
[10] Qiao H, Yuan J, Xu Z, et al. Broadband photodetectors based on graphene–Bi2Te3 heterostructure [J]. ACS Nano, 2015, 9(2): 1886-1894.
[11] Yao Y, Shankar R, Rauter P, et al. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection [J]. Nano Letters, 2014, 14(7): 3749-3754.
[12] Liu Y, Cheng R, Liao L, et al. Plasmon resonance enhanced multicolour photodetection by graphene [J]. Nature Communications, 2011, 2(1): 579.
[13] Fang Z, Liu Z, Wang Y, et al. Graphene-antenna sandwich photodetector [J]. Nano Letters, 2012, 12(7): 3808-3813.
[14] Echtermeyer T J, Britnell L, Jasnos P K, et al. Strong plasmonic enhancement of photovoltage in graphene [J]. Nature Communications, 2011, 2(1): 458.
[15] Chakraborty C, Beams R, Goodfellow K M, et al. Optical antenna enhanced graphene photodetector [J]. Applied Physics Letters, 2014, 105(24): 241114.
[16] Shautsova V, Sidiropoulos T, Xiao X, et al. Plasmon induced thermoelectric effect in graphene [J]. Nature Communications, 2018, 9(1): 5190.
[17] Hou C, Wang Y, Yang L, et al. Position sensitivity of optical nano-antenna arrays on optoelectronic devices [J]. Nano Energy, 2018, 53: 734-744.
[18] Furchi M, Urich A, Pospischil A, et al. Microcavity-integrated graphene photodetector [J]. Nano Letters, 2012, 12(6): 2773-2777.
[19] Engel M, Steiner M, Lombardo A, et al. Light–matter interaction in a microcavity-controlled graphene transistor [J]. Nature Communications, 2012, 3(1): 906.
[20] Wang X, Cheng Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors [J]. Nature Photonics, 2013, 7(11): 888-891.
[21] Pospischil A, Humer M, Furchi M M, et al. CMOS-compatible graphene photodetector covering all optical communication bands [J]. Nature Photonics, 2013, 7(11): 892-896.
[22] Gan X, Shiue R-J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity [J]. Nature Photonics, 2013, 7(11): 883-887.
[23] Le Perchec J, Desieres Y, Espiau de Lamaestre R. Plasmon-based photosensors comprising a very thin semiconducting region [J]. Applied Physics Letters, 2009, 94(18): 181104.
[24] Song S, Chen Q, Jin L, et al. Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber [J]. Nanoscale, 2013, 5(20): 9615.
[25] Cai Y, Zhu J, Liu Q H. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers [J]. Applied Physics Letters, 2015, 106(4): 043105.
[26] Xiong F, Zhang J, Zhu Z, et al. Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping [J]. Scientific Reports, 2015, 5(1): 16998.
[27] Yang J, Sauvan C, Jouanin A, et al. Ultrasmall metal-insulator-metal nanoresonators: Impact of slow-wave effects on the quality factor [J]. Optics Express, 2012, 20(15): 16880.
[28] Zhen T, Zhou J, Li Z, et al. Realization of both high absorption of active materials and low ohmic loss in plasmonic cavities [J]. Advanced Optical Materials, 2019, 7(11): 1801627.
[29] Guo, S, Zhang, D, Zhou, J, et al. Enhanced infrared photoresponse induced by symmetry breaking in a hybrid structure of graphene and plasmonic nanocavities [J]. Carbon, 2020, 170: 49-58.
[30] Zhang D, Zhou J, Liu C, et al. Enhanced polarization sensitivity by plasmonic-cavity in graphene phototransistors [J]. Journal of Applied Physics, 2019, 126(7): 074301.