留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非柯尔莫哥洛夫湍流对星光到达角起伏影响研究

都文和 周志明 刘道森 蔡成江 堵秀凤 李锐 张光宇 杨玉强

都文和, 周志明, 刘道森, 蔡成江, 堵秀凤, 李锐, 张光宇, 杨玉强. 非柯尔莫哥洛夫湍流对星光到达角起伏影响研究[J]. 红外与激光工程, 2013, 42(10): 2778-2783.
引用本文: 都文和, 周志明, 刘道森, 蔡成江, 堵秀凤, 李锐, 张光宇, 杨玉强. 非柯尔莫哥洛夫湍流对星光到达角起伏影响研究[J]. 红外与激光工程, 2013, 42(10): 2778-2783.
Du Wenhe, Zhou Zhiming, Liu Daosen, Cai Chengjiang, Du Xiufeng, Li Rui, Zhang Guangyu, Yang Yuqiang. Effect of non-Kolmogorov turbulence on fluctuations in angle of arrival of starlight[J]. Infrared and Laser Engineering, 2013, 42(10): 2778-2783.
Citation: Du Wenhe, Zhou Zhiming, Liu Daosen, Cai Chengjiang, Du Xiufeng, Li Rui, Zhang Guangyu, Yang Yuqiang. Effect of non-Kolmogorov turbulence on fluctuations in angle of arrival of starlight[J]. Infrared and Laser Engineering, 2013, 42(10): 2778-2783.

非柯尔莫哥洛夫湍流对星光到达角起伏影响研究

基金项目: 

黑龙江省教育厅科学技术研究项目(12511610)

详细信息
    作者简介:

    都文和(1970- ),男,副教授,博士,主要从事大气光学及卫星激光通信等方面的研究。Email:atocom@163.com

  • 中图分类号: TN012

Effect of non-Kolmogorov turbulence on fluctuations in angle of arrival of starlight

  • 摘要: 基于A. S. Gurvich等人所提出的非柯尔莫哥洛夫湍流功率谱密度模型,推导了弱起伏条件下的到达角起伏方差,得到了一个解析的结果;然后,利用该结果分析了对流层柯尔莫哥洛夫湍流和平流层非柯尔莫哥洛夫湍流对星光到达角起伏的联合影响。结果表明:星光到达角起伏主要是由对流层柯尔莫哥洛夫湍流决定;对于不同的接收孔径,到达角起伏5%~14%是由平流层非柯尔莫哥洛夫湍流引起的。此外,非柯尔莫哥洛夫湍流对到达角起伏还取决于接收孔径、湍流外尺度及非柯尔莫哥洛夫湍流起伏强度。
  • [1] Andrews L C, Phillips R L. Laser Beam Propagation Through Random Media [M]. Bellingham: SPIE Optical Engineering Press, 1998.
    [2]
    [3]
    [4] Tatarskii V I. Wave Propagation in a Turbulent Medium [M]. New York: McGraw-Hill Book Company Inc, 1961.
    [5] Tatarskii V I. The Effects of the Turbulent Atmosphere on Wave Propagation [M]. Israel Program for Scientific Translations, 1971.
    [6]
    [7] Chiba T. Spot dancing of the laser beam propagated through the turbulent atmosphere[J]. Appl Opt, 1971, 10: 2456-2461.
    [8]
    [9] Ma Huimin, Zhang Pengfei, Zhang Jinghui, et al. Numerical simulation and analysis of dynamic compensation for atmosphere turbulence based on stochastic parallel gradient descent optimization[J]. Opt Lett, 2012, 10(1): S10102.
    [10]
    [11]
    [12] Liu C, Yao Y, Sun Y, et al. Average capacity optimization in free-space optical communication system over atmospheric turbulence channels with pointing errors [J]. Opt Lett, 2010, 8(3): 537.
    [13] Lu Wei,Liu Liren,Sun Jianfeng. Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence [J]. Opt Lett, 2006, 10 (6): 1052.
    [14]
    [15] Majumdar A K, Ricklin J C. Effects of the atmospheric channel on free-space laser communications[C]//SPIE, 2004, 5892: 58920K-1.
    [16]
    [17] Ricklin J C. Estimating optical turbulence effects on free-space laser communication:modeling and measurements at arl's a_lot facility[C]//SPIE, 2004, 5550: 247-255.
    [18]
    [19] Kazaura K, Omae K, Suzuki T, et al. Enhancing performance of next generation fso communication systems using soft computing-based predictions [J]. Opt Express, 2006, 14: 4958-4968.
    [20]
    [21]
    [22] Andrews L C, Phillips R L. Optical scintillations and fade statistics for a satellite-communication systems[J]. Appl Opt, 1995, 34: 7742-7751.
    [23] Chesnokov S S, Skipetrov S E. Optical resolution through atmospheric turbulence with finite outer scale [J]. Optics Communications, 1997, 141: 113-117.
    [24]
    [25] Chen Xiaowen, Ji Xiaoling. Directionality of partially coherent annular flat-topped beams propagating through atmospheric turbulence [J]. Optics Communications, 2008, 281: 4765-4770.
    [26]
    [27] Consortini A, Innocenti C. Estimate method for outer scale of atmospheric turbulence[J]. Optics Communications, 2002, 214: 9-14.
    [28]
    [29] Hahil Tanyer Eyyuboglu. Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence[J]. Optics and Laser Technology, 2008, 40: 156-166.
    [30]
    [31] Mahdieh M H, Pournoury M. Atmospheric turbulence and numerical evaluation of bit err or rate (BER) in free-space communication [J]. Optics and Laser Technology, 2010, 42:55-60.
    [32]
    [33]
    [34] Golbraikh E, Kopeika N S. Behavior of structure function of refraction coefficient in different turbulent fields [J]. Applied Optics, 2004, 43: 6151-6156.
    [35]
    [36] Zilberman A, Golbraikh E, Kopeika S, et al. Lidar study of aerosol turbulence characteristicss in the troposphere: Kolmogorov and non-Kolmogorov turbulence [J]. Atmospheric Research, 2008, 88: 66-77.
    [37]
    [38] Kyrazis D T, Wissler J B, Keating D B, et al. Measurement of optical turbulence in the upper troposphere and lower stratosphere[C]//SPIE, 1994, 2110: 43-55.
    [39]
    [40] Chu Xiuxiang, Qiao Chunhong, Feng Xiaoxing. Average intensity of flattened Gaussian beam in non-Kolmogorov turbulence [J]. Optics and Laser Technology, 2011, 43: 1150-1154.
    [41] Tan Liying, Du Wenhe, Ma Jing, et al. Log-amplitude variance for a Gaussian-beam wave propagating through Non-Kolmogorov turbulence[J]. Optics Express, 2010: 451-462.
    [42]
    [43]
    [44] Zhang Yixin, Si Congfang, Wang Yuanguang, et al. Capacity for non-Kolmogorov turbulent optical links with beam wander and pointing errors [J]. Optics and Laser Technology, 2011, 43: 1338-1342.
    [45]
    [46] Wu Guohua, Zhao Tongguang, Ren Jianhua, et al. Beam propagat ion factor of partially coherent Hermite-Gaussian beams through non-Kolmogorov turbulence [J]. Optics and Laser Technology, 2011, 43: 1225-1228.
    [47]
    [48] Gurvich A S, Belen忆kii M S. Influence of stratospheric turbulence on infrared imaging [J]. J Opt Soc Am A, 1995, 12: 2517-2522.
    [49]
    [50] Belen忆kii M S. Effect of the stratosphere on star image motion[J]. Opt Lett, 1995, 20(12): 1359-1361.
    [51]
    [52] Trinquet H, Agabi A, Vernin J, et al. Optical turbulence and outer scales above Dome C in Antarctica [C]//SPIE, 2008, 7012: 701225-1.
    [53] Abahamid A, Jabiri A, Verin J, et al. Optical turbulence modeling in the boundary layer and free atmosphere using instrumented meteorological balloons [J]. Astronomy and Astrophysics, 2004, 416: 1193-1200.
    [54]
    [55]
    [56] Trinquet H, Agabi A, Vernin J, et al. Using meteorological forecasts to predict astronoical seeing [C]//SPIE, 2008,7012: 701225-1.
    [57] Abahamid A, Jabiri A, Verin J, et al. Meteorological profiles and optical turbulence in the free atmosphere with NCEP/ NCAR data at Oukaimeden [J]. Astronomu and Astrophysics, 2004, 416: 1193
  • [1] 饶瑞中.  现代大气光学及其在光电工程应用中的问题分析与展望(特邀) . 红外与激光工程, 2022, 51(1): 20210818-1-20210818-10. doi: 10.3788/IRLA20210818
    [2] &陈双远, &张芳, 齐琳琳, 韩成鸣, 曾丽, 许方宇.  国内典型天文台站大气红外背景辐射实测分析 . 红外与激光工程, 2019, 48(12): 1203010-1203010(9). doi: 10.3788/IRLA201948.1203010
    [3] 王怡, 王运敏, 马晶.  到达角起伏对上行星地激光通信系统性能的影响 . 红外与激光工程, 2018, 47(1): 122001-0122001(9). doi: 10.3788/IRLA201847.0122001
    [4] 徐梦春, 徐青山.  气溶胶粒子特性和垂直分布对辐射的影响 . 红外与激光工程, 2016, 45(2): 211002-0211002(7). doi: 10.3788/IRLA201645.0211002
    [5] 颜召军, 杨朋千.  层向多层共轭自适应光学系统的模拟 . 红外与激光工程, 2016, 45(9): 918005-0918005(6). doi: 10.3788/IRLA201645.0918005
    [6] 刘栋, 戴聪明, 魏合理.  中高层大气CO2临边辐射院模拟与观测对比分析 . 红外与激光工程, 2016, 45(2): 211001-0211001(7). doi: 10.3788/IRLA201645.0211001
    [7] 胡月宏, 宗飞, 吴敏, 封双连, 李志朝.  等晕角测量结果对比分析 . 红外与激光工程, 2016, 45(S2): 26-29. doi: 10.3788/IRLA201645.S217001
    [8] 曹开法, 黄见, 胡顺星.  边界层臭氧差分吸收激光雷达 . 红外与激光工程, 2015, 44(10): 2912-2917.
    [9] 沈红, 范承玉.  信道相关对空间分集接收信号闪烁的影响 . 红外与激光工程, 2015, 44(8): 2523-2527.
    [10] 胡冬冬, 舒志峰, 孙东松, 张飞飞, 窦贤康.  瑞利测风激光雷达夜间准零风层观测结果分析 . 红外与激光工程, 2015, 44(2): 482-485.
    [11] 沈红, 范承玉, 于龙昆.  大气闪烁的时间频域特性研究 . 红外与激光工程, 2015, 44(4): 1301-1305.
    [12] 林勇, 徐智勇, 汪井源, 宋超, 王荣, 耿常锁.  雾环境下非视距散射光通信最佳链路分析 . 红外与激光工程, 2015, 44(2): 705-710.
    [13] 向劲松, 张明杰.  一种空间激光通信中模拟湍流效应的新方法 . 红外与激光工程, 2015, 44(9): 2721-2725.
    [14] 宗飞, 张志刚, 王柯, 霍文, 胡月宏, 常金勇, 强希文.  新疆戈壁地区近湖面大气湍流强度测量与分析 . 红外与激光工程, 2015, 44(S1): 104-108.
    [15] 张洪建, 韦宏艳, 贾锐, 程玲.  斜程大气湍流中成像系统分辨率的影响因素研究 . 红外与激光工程, 2015, 44(5): 1569-1573.
    [16] 康丽, 朱文越.  长距离光传播路径中大气相干长度的测量研究 . 红外与激光工程, 2015, 44(6): 1918-1922.
    [17] 王利国, 吴振森, 王明军, 王万君, 张耿.  湍流大气中部分相干光二阶统计特性的三参数模型及其应用 . 红外与激光工程, 2015, 44(1): 317-320.
    [18] 周文超, 胡晓阳, 云宇, 田小强, 黄德权.  瑞利信标非等晕性误差测量试验研究 . 红外与激光工程, 2014, 43(6): 1943-1949.
    [19] 孙刚, 翁宁泉, 张彩云, 高慧, 吴毅.  基于NOAA模式的典型地区大气湍流高度分布 . 红外与激光工程, 2014, 43(2): 388-393.
    [20] 程巳阳, 高闽光, 徐亮, 冯明春, 张天舒, 刘建国, 刘文清.  高温气体浓度光谱分析中的温度修正方法 . 红外与激光工程, 2013, 42(2): 413-417.
  • 加载中
计量
  • 文章访问数:  354
  • HTML全文浏览量:  27
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-20
  • 修回日期:  2013-03-21
  • 刊出日期:  2013-10-25

非柯尔莫哥洛夫湍流对星光到达角起伏影响研究

    作者简介:

    都文和(1970- ),男,副教授,博士,主要从事大气光学及卫星激光通信等方面的研究。Email:atocom@163.com

基金项目:

黑龙江省教育厅科学技术研究项目(12511610)

  • 中图分类号: TN012

摘要: 基于A. S. Gurvich等人所提出的非柯尔莫哥洛夫湍流功率谱密度模型,推导了弱起伏条件下的到达角起伏方差,得到了一个解析的结果;然后,利用该结果分析了对流层柯尔莫哥洛夫湍流和平流层非柯尔莫哥洛夫湍流对星光到达角起伏的联合影响。结果表明:星光到达角起伏主要是由对流层柯尔莫哥洛夫湍流决定;对于不同的接收孔径,到达角起伏5%~14%是由平流层非柯尔莫哥洛夫湍流引起的。此外,非柯尔莫哥洛夫湍流对到达角起伏还取决于接收孔径、湍流外尺度及非柯尔莫哥洛夫湍流起伏强度。

English Abstract

参考文献 (57)

目录

    /

    返回文章
    返回