留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用图谱特征解析和反演作物叶绿素密度

张东彦 刘良云 黄文江 Coburn Craig 梁栋

张东彦, 刘良云, 黄文江, Coburn Craig, 梁栋. 利用图谱特征解析和反演作物叶绿素密度[J]. 红外与激光工程, 2013, 42(7): 1871-1881.
引用本文: 张东彦, 刘良云, 黄文江, Coburn Craig, 梁栋. 利用图谱特征解析和反演作物叶绿素密度[J]. 红外与激光工程, 2013, 42(7): 1871-1881.
Zhang Dongyan, Liu Liangyun, Huang Wenjiang, Coburn Craig, Liang Dong. Inversion and evaluation of crop chlorophyll density based on analyzing image and spectrum[J]. Infrared and Laser Engineering, 2013, 42(7): 1871-1881.
Citation: Zhang Dongyan, Liu Liangyun, Huang Wenjiang, Coburn Craig, Liang Dong. Inversion and evaluation of crop chlorophyll density based on analyzing image and spectrum[J]. Infrared and Laser Engineering, 2013, 42(7): 1871-1881.

利用图谱特征解析和反演作物叶绿素密度

基金项目: 

中国科学院数字地球重点实验室资助(2012LDE003);安徽省高等学校省级自然科学研究项目(KJ2013A026);安徽省自然科学基金青年基金(1308085QC58);国家自然科学基金(41071228、61172127);中国博士后科学基金(2013T60189);安徽大学博士科研启动经费

详细信息
    作者简介:

    张东彦(1982-),男,讲师,博士,主要从事高光谱图像处理及遥感定量化方面的研究。Email:hello-lion@hotmail.com;梁栋(1963-),男,教授,博士生导师,博士,主要从事模式识别、图像处理方面研究。Email:dliang@ahu.edu.cn

    张东彦(1982-),男,讲师,博士,主要从事高光谱图像处理及遥感定量化方面的研究。Email:hello-lion@hotmail.com;梁栋(1963-),男,教授,博士生导师,博士,主要从事模式识别、图像处理方面研究。Email:dliang@ahu.edu.cn

  • 中图分类号: TP79;S127

Inversion and evaluation of crop chlorophyll density based on analyzing image and spectrum

  • 摘要: 地面成像光谱仪可对作物个体及群体信息进行图谱同步解析,因此在农业定量化研究中具有巨大的应用潜力。利用可见-近红外成像光谱仪采集不同生育期玉米和大豆的冠层图谱数据,在逐步提取影像中光照土壤、阴影土壤、光照植被、阴影植被四种组分光谱的基础上,通过选取的敏感波段构建光谱植被指数和叶绿素密度进行波段自相关分析,探讨各个分量对作物叶绿素密度反演的影响。研究发现:当植被与土壤混合存在时,对叶绿素密度敏感的波段基本在红光与近红外波段;当植被光谱提纯后(剔除土壤光谱),对叶绿素密度敏感的波段范围增大,表现在蓝、绿波段;当阴影叶片光谱剔除后,对叶绿素密度敏感的波段表现为可见光波段增加,近红外波段减少,红边波段决定系数最高。上述变化特征在不同作物中有相同的趋势,为探索地面成像光谱仪图谱协同反演作物生化参数进行了有意义的探索。
  • [1]
    [2] Liu Bo. Plant information extraction based on field imaging spectrometer system[D]. Beijing: Institute of Remote Sensing Application Chinese Academy of Sciences, 2010. (in Chinese)
    [3] Haboudane D, Miller J, Tremblay N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sensing of Environment, 2002, 81: 416-426.
    [4]
    [5]
    [6] Haboudane D, Miller J R, Pattey E. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment, 2004, 90: 337-352.
    [7] Huang Wenjiang, Wang Jihua, Liu Liangyun, et al. Remote sensing identification of plant structural types based on multi-temporal and bidirectional canopy spectrum[J]. Transactions of the CSAE, 2005, 21(6): 1-5. (in Chinese)
    [8]
    [9] Tan Haizhen, Li Shaokun, Wang Keru, et al. Monitoring canopy chlorophyll density in seedlings of winter wheat using imaging spectrometer[J]. Acta Agronomica Sinica, 2008, 34(10): 1812-1817. (in Chinese)
    [10]
    [11]
    [12] Yang Minhua, Zhao Chunjiang, Zhao Yongchao, et al. Research on a method to derive wheat canopy information from airborne imaging spectrometer data[J]. Scientia Agricultura Sinica, 2002, 35(6): 626-631. (in Chinese)
    [13] Song Xiaoyu, Wang Jihua, Huang Wenjiang, et al. The delineation of agricultural management zones with high resolution remotely sensed data[J]. Precision Agriculture, 2009, 10(6): 471-487.
    [14]
    [15]
    [16] Chen Pengfei, Haboudane Driss, Nicolas Tremblay, et al. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat[J]. Remote Sensing of Environment, 2010, 114: 1987-1997.
    [17] Lukina E V, Stone M L, Raun W R. Estimating vegetation coverage in wheat using digital images[J]. Journal of Plant Nutrition, 1999, 22(2): 341-350.
    [18]
    [19] Wang Keru, Li ShaoKun, Wang Chongtao, et al. Acquired chlorophyll concentration of cotton leaves with technology of machine vision[J]. Scientia Agricultura Sinica, 2006, 32(1): 34-40. (in Chinese)
    [20]
    [21] Zhu Jinxia, Deng Jinsong, Shi Yuanyuan, et al. Diagnoses of rice nitrogen status based on characteristics of scanning leaf[J]. Spectroscopy and Spectral Analysis, 2009, 29(8): 2171-2175. (in Chinese)
    [22]
    [23]
    [24] Wang Fangyong, Wang Keru, Li Shaokun, et al. Estimation of canopy leaf nitrogen status using imaging spectrometer and digital camera in cotton[J]. Acta Agronomica Sinica, 2011, 37(6): 1039-1048. (in Chinese)
    [25]
    [26] Tong Qingxi, Xue Yongqi, Wang Jinnian, et al. Development and application of the field imaging spectrometer system[J]. Journal of Remote Sensing, 2010, 14(3): 409-422. (in Chinese)
    [27] Zhang Dongyan, Huang Wenjiang, Wang Jihua, et al. In-situ crop hyperspectral acquiring and spectral features analysis based on pushbroom imaging spectrometer[J]. Transactions of the CSAE, 2010, 26(12): 188-192. (in Chinese)
    [28]
    [29] Chai Ali, Liao Ningfang, Tian Lixun. Identification of cucumber disease using hyperspectral imaging and discriminate analysis[J]. Spectroscopy and Spectral Analysis, 2010, 30(5): 1357-1361. (in Chinese)
    [30]
    [31]
    [32] Christian Nansen, Tulio Macedo, Rand Swanson, et al. Use of spatial structure analysis of hyperspectral data cubes for detection of insect‐induced stress in wheat plants[J]. International Journal of Remote Sensing, 2009, 30(10): 2447-2464.
    [33]
    [34] Inoue Y, Penuelas J. An AOTF-based hyperspectral imaging system for field use in ecophysiological and agricultural applications[J]. International Journal of Remote Sensing, 2001, 22(18): 3883-3888.
    [35] Wang Jihua, Zhao Chunjiang, Huang Wenjiang. Basis and Application of Quantitative Remote Sensing in Agriculture[M]. Beijing: Science Press, 2008: 141-184. (in Chinese)
    [36]
    [37] Zhang Dongyan. Diagnosis mechanism and methods of crop chlorophyll information based on hypersepctral imaging technology[D]. Hangzhou: Zhejiang Unversity, 2012. (in Chinese)
    [38]
    [39] Huang Wenjiang. Remote Sensing Monitoring of Crops Diseases Mechanism and Application[M]. Beijing: China's Agricultural Science and Technology Press, 2009: 18-24. (in Chinese)
    [40]
    [41]
    [42] Haboudane D, Tremblay N, Miller J R, et al. Remote estimation of crop chlorophyll content using spectral indices derived from hyperspecral data[J]. IEEE Transaction on Geoscience and Remote sensing, 2008, 46: 423-427.
    [43] Roshanak Darvishzadeh, Andrew Skidmore, Artin Chlerf, et al. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in heterogeneous grassland[J]. Remote Sensing of Environment, 2008, 112: 2592-2604.
    [44]
    [45] Pearson R L, Miller L D. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie[C]//Proceedings of the 8th International Symposium on Remote Sensing of the Environment II, 1972: 1355-1379.
    [46]
    [47] Gitelson A A, Kaufman Y, Merzlyak M. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment, 1996, 58(3): 289-298.
    [48]
    [49] Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression[J]. Remote Sensing of Environment, 2003, 86: 542-553.
    [50]
    [51] Yao Xia, Zhu Yan, Feng Wei, et al. Exploring novel hyperspectral band and key index for leaf nitrogen accumulation in wheat[J]. Spectroscopy and Spectral Analysis, 2009, 29(8): 2191-2195. (in Chinese)
    [52]
    [53]
    [54] Eitel J U H, Long D S, Gessler P E, et al. Using in-situ measurements to evaluate the new RapidEyeTM satellite series for prediction of wheat nitrogen status[J]. International Journal of Remote Sensing, 2007, 28: 4183-4190.
    [55] Peǐuelas J, Gamon J A, Fredeen A L, et al. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves[J]. Remote Sensing and Environment, 1994, 48, 135-146.
    [56]
    [57]
    [58] Blackburn G A. Spectral indices for estimating photosynthetic pigment concentration: a test senescent tree leaves[J]. International Journal of Remote Sensing, 1998, 19(4): 657-675.
    [59]
    [60] Shaw D T. High-spectral resolution data for monitoring Scots pine regeneration[J]. International Journal of Remote Sensing, 1998, 19(13): 2601-2608.
    [61] Zhang Dangyan, Liang Dong, Zhao Jinling, et al. Research bidirectional reflectance characteristics of soybean canopy using multi-angle hyperspectral imaging[J]. Infrared and Laser Engineering, 2013, 42(3): 787-797. (in Chinese)
  • [1] 李德奎, 徐陈祥, 林冰, 郭凯, 张宁, 高隽, 郭忠义.  偏振纯度指数理论及应用研究进展 . 红外与激光工程, 2022, 51(3): 20210373-1-20210373-13. doi: 10.3788/IRLA20210373
    [2] 朱培志, 刘秉义, 孔晓娟, 杨倩.  星载海洋激光雷达叶绿素剖面探测能力估算 . 红外与激光工程, 2021, 50(2): 20200164-1-20200164-9. doi: 10.3788/IRLA20200164
    [3] 何赛灵, 李硕, 陈祥, 徐展鹏, 边秋莞, 罗晶, 罗龙强.  高光谱图谱仪与激光雷达及其在海洋生物检测方面的应用 . 红外与激光工程, 2021, 50(6): 20211033-1-20211033-21. doi: 10.3788/IRLA20211033
    [4] 张伟, 薛辉, 于磊.  日光诱导叶绿素荧光高光谱成像仪研究(特邀) . 红外与激光工程, 2021, 50(10): 20210311-1-20210311-9. doi: 10.3788/IRLA20210311
    [5] 何赛灵, 陈祥, 李硕, 姚辛励, 徐展鹏.  小型高光谱图谱仪与激光雷达及其海洋应用 . 红外与激光工程, 2020, 49(2): 0203001-0203001. doi: 10.3788/IRLA202049.0203001
    [6] 王聪, 吕冬翔.  晶体拉曼放大器的理论解析 . 红外与激光工程, 2018, 47(11): 1105007-1105007(6). doi: 10.3788/IRLA201847.1105007
    [7] 鲁佳颖, 谷小婧, 顾幸生.  面向微光/红外融合彩色夜视的场景解析方法 . 红外与激光工程, 2017, 46(8): 804002-0804002(6). doi: 10.3788/IRLA201746.0804002
    [8] 张文涛, 李跃文, 占平平, 熊显名.  基于太赫兹时域光谱技术与PCA-SVM的转基因大豆油鉴别研究 . 红外与激光工程, 2017, 46(11): 1125004-1125004(6). doi: 10.3788/IRLA201746.1125004
    [9] 林芬芳, 张东彦, 王秀, 吴太夏, 陈新福.  基于偏振光谱的叶片尺度下玉米与杂草识别研究 . 红外与激光工程, 2016, 45(12): 1223001-1223001(10). doi: 10.3788/IRLA201645.1223001
    [10] 梁栋, 杨勤英, 黄文江, 彭代亮, 赵晋陵, 黄林生, 张东彦, 宋晓宇.  基于小波变换与支持向量机回归的冬小麦叶面积指数估算 . 红外与激光工程, 2015, 44(1): 335-340.
    [11] 李彬, 桑吉章, 宁津生.  空间碎片半解析法轨道预报精度性能分析 . 红外与激光工程, 2015, 44(11): 3310-3316.
    [12] 张磊, 程鑫彬, 张锦龙, 王占山.  光学表面功率谱密度的表征 . 红外与激光工程, 2015, 44(12): 3707-3712.
    [13] 段运生, 张东彦, 黄林生, 赵晋陵.  冻害胁迫小麦的图谱特征解析研究 . 红外与激光工程, 2015, 44(7): 2218-2223.
    [14] 梁栋, 谢巧云, 黄文江, 彭代亮, 杨晓华, 黄林生, 胡勇.  最小二乘支持向量机用于时间序列叶面积指数预测 . 红外与激光工程, 2014, 43(1): 243-248.
    [15] 关红, 贾科利, 张至楠.  采用高光谱指数的龟裂碱土盐碱化信息提取与分析 . 红外与激光工程, 2014, 43(12): 4153-4158.
    [16] 李子扬, 钱永刚, 申庆丰, 王宁, 刘耀开, 马灵玲, 孔祥生.  基于高光谱数据的叶面积指数遥感反演 . 红外与激光工程, 2014, 43(3): 944-949.
    [17] 张东彦, 赵晋陵, 黄林生, 马雯萩.  用于高光谱图像分类的归一化光谱指数的构建与应用 . 红外与激光工程, 2014, 43(2): 586-594.
    [18] 张永贺, 郭啸川, 褚武道, 艾金泉, 项天宋, 郭乔影, 周毅军, 陈文惠.  基于红边位置的木荷叶片叶绿素含量估测模型研究 . 红外与激光工程, 2013, 42(3): 798-804.
    [19] 杨杭, 张立福, 童庆禧.  采用可见/近红外成像光谱技术的玉米籽粒品种识别 . 红外与激光工程, 2013, 42(9): 2437-2441.
    [20] 张东彦, 梁栋, 赵晋陵, Coburn Craig, Wang Zhijie, 王秀.  多角度成像解析大豆冠层的二向反射特征 . 红外与激光工程, 2013, 42(3): 787-797.
  • 加载中
计量
  • 文章访问数:  305
  • HTML全文浏览量:  57
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-25
  • 修回日期:  2013-03-26
  • 刊出日期:  2013-07-25

利用图谱特征解析和反演作物叶绿素密度

    作者简介:

    张东彦(1982-),男,讲师,博士,主要从事高光谱图像处理及遥感定量化方面的研究。Email:hello-lion@hotmail.com;梁栋(1963-),男,教授,博士生导师,博士,主要从事模式识别、图像处理方面研究。Email:dliang@ahu.edu.cn

    张东彦(1982-),男,讲师,博士,主要从事高光谱图像处理及遥感定量化方面的研究。Email:hello-lion@hotmail.com;梁栋(1963-),男,教授,博士生导师,博士,主要从事模式识别、图像处理方面研究。Email:dliang@ahu.edu.cn

基金项目:

中国科学院数字地球重点实验室资助(2012LDE003);安徽省高等学校省级自然科学研究项目(KJ2013A026);安徽省自然科学基金青年基金(1308085QC58);国家自然科学基金(41071228、61172127);中国博士后科学基金(2013T60189);安徽大学博士科研启动经费

  • 中图分类号: TP79;S127

摘要: 地面成像光谱仪可对作物个体及群体信息进行图谱同步解析,因此在农业定量化研究中具有巨大的应用潜力。利用可见-近红外成像光谱仪采集不同生育期玉米和大豆的冠层图谱数据,在逐步提取影像中光照土壤、阴影土壤、光照植被、阴影植被四种组分光谱的基础上,通过选取的敏感波段构建光谱植被指数和叶绿素密度进行波段自相关分析,探讨各个分量对作物叶绿素密度反演的影响。研究发现:当植被与土壤混合存在时,对叶绿素密度敏感的波段基本在红光与近红外波段;当植被光谱提纯后(剔除土壤光谱),对叶绿素密度敏感的波段范围增大,表现在蓝、绿波段;当阴影叶片光谱剔除后,对叶绿素密度敏感的波段表现为可见光波段增加,近红外波段减少,红边波段决定系数最高。上述变化特征在不同作物中有相同的趋势,为探索地面成像光谱仪图谱协同反演作物生化参数进行了有意义的探索。

English Abstract

参考文献 (61)

目录

    /

    返回文章
    返回