留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无线光通信中的空时编码研究进展(一)

柯熙政 谌娟 邓莉君

柯熙政, 谌娟, 邓莉君. 无线光通信中的空时编码研究进展(一)[J]. 红外与激光工程, 2013, 42(7): 1882-1889.
引用本文: 柯熙政, 谌娟, 邓莉君. 无线光通信中的空时编码研究进展(一)[J]. 红外与激光工程, 2013, 42(7): 1882-1889.
Ke Xizheng, Chen Juan, Deng Lijun. Research progress of space-time code in wireless optical communications(Ⅰ)[J]. Infrared and Laser Engineering, 2013, 42(7): 1882-1889.
Citation: Ke Xizheng, Chen Juan, Deng Lijun. Research progress of space-time code in wireless optical communications(Ⅰ)[J]. Infrared and Laser Engineering, 2013, 42(7): 1882-1889.

无线光通信中的空时编码研究进展(一)

基金项目: 

国家自然科学基金(60977054);陕西省教育厅产业化培育项目(2010JC17)

详细信息
    作者简介:

    柯熙政(1962-),男,教授,主要从事无线激光通信方面的研究。Email:xzke@263.net

  • 中图分类号: TN929.12

Research progress of space-time code in wireless optical communications(Ⅰ)

  • 摘要: MIMO技术在射频通信领域已被深入研究,使空间成为一种可以用于提高通信性能的资源。无线光通信与射频通信在调制/解调方法、信道特性诸方面有很大的差异。文中评述了国内外有关无线光MIMO技术的研究进展,对无线光MIMO的提出背景进行了详细分析,最后通过实验说明了MIMO对大气湍流的抑制效应。实验结果表明:无线光MIMO不但使空间成为一种资源,提高了无线光通信的信道容量,而且可以抑制大气湍流效应,扩大了无线光通信的应用场合。
  • [1] Ma Liang. Wireless Aommunication of the Smart Antenna-IS95 and Third Generation CDMA Application[M]. Beijing: China Machine Press, 2002: 20-31. (in Chinese)
    [2]
    [3] Huang Haoxue, Wu Siliang. An algorithm for estimating DOA and doppler frequency of signals incident on uniform circular array[J]. Acta Electronica Sinica, 2001, 29(5): 619-620. (in Chinese)
    [4]
    [5]
    [6] Khalighi M A, Brossier J -M, Jourdain G V, et al. Water filling capacity of Rayleigh MIMO channels[C]//12th IEEE International Symposium, 2001, 1: 156-158.
    [7] Gao Jie. Applying MIMO technology in the ultra wide band system[D]. Xi'an: Xidian Univershity, 2008: 10-11. (in Chinese)
    [8]
    [9]
    [10] Stphanie S, Anne J V, Jean-Pierre C. Soft decision LDPC decoding over chi-square based optical channels[J]. Journal of Lightwave Technology, 2009, 27(16): 3540-3545.
    [11]
    [12] Stephanie S, Damien F, Anne J V, et al. LDPC code design and performance analysis on OOK chi-square-based optical channels[J]. IEEE Photonics Technology Letters, 2009, 21(17): 1190-1192.
    [13] He Xiaomei, Li Xiaofeng, Zhang Dongyun, et al. Performance for efficient error correction coding in wireless optical communication[J]. Acta Photonica Sinica, 2008, 37(12): 2427-2429. (in Chinese)
    [14]
    [15] Liu Yidong, Gao Chunqing, Li Feng, et al. Study on orbital angular momentum and its spectrum of partially coherent light beam[J]. Journal of Applied Optics, 2007, 28(04): 462-467. (in Chinese)
    [16]
    [17]
    [18] Xiang Peng, Wang Rong. Study on dynamic routing, wavelength and timeslot assignment algorithm in WDM-TDM optical networks[J]. Journal of Electronics Information Technology, 2009, 31(3): 679-681. (in Chinese)
    [19] Zhou Guangtao, Zhang Xiaoguang, Xi Lixia, et al. Two-stage adaptive polarization mode dispersion compensation experiment in 40 Gb/s optical time division multiplexing system[J]. Acta Optica Sinica, 2005, 25(1):15-20. (in Chinese)
    [20]
    [21]
    [22] Pan Weiqing, Liu Liren, Liu Ximing. System and code/decode scheme for imaging optical communication[J]. Chinese Journal of Lasers, 2006, 33(2): 213-220. (in Chinese)
    [23]
    [24] Djordjevic I B. LDPC-coded MIMO optical communication over the atmospheric turbulence channel using Q-ary pulse-position modulation[J]. Optics Express, 2007, 15(16): 10026~10032.
    [25] Wilson S G, Brandt-Pearce M, Cao Q. Optical MIMO transmission with Q-ary PPM for atmosphere channel[J]. IEEE Transactions Communications, 2004, 53(8): 1090-1094.
    [26]
    [27]
    [28] Awan M S, Brandl P, Leitgeb E, et al.Transmission of high data rate optical signals in fog and snow conditions[C]//IEEE, 2009: 702-706.
    [29] Feng B, Guo F, Yu M. Dynamic probabilistic packet marking based on PPM[C]//Proceedings of the 2009 2nd Pacific-Asia Conference on Web Mining and Web-Based Application, 2009: 289-292.
    [30]
    [31]
    [32] Igor J, Tomaz J, Gorazd K, et al. Simplified soft value extraction for M-PPM-modulated signals in FSO systems[J]. International Journal of Electronics and Communications, 2009, 63(7): 595-599.
    [33] Jen Fa H, Chao Chin Y, Chun Ming H. On analyzing quasi-cyclic LDPC codes over modified welch-costas-coded optical CDMA system[J]. Journal of Lightwave Technology, 2009, 27(12): 2150-2158.
    [34]
    [35]
    [36] Kamran K. Turbo-coded optical PPM communication systems[J]. Journal of Lightwave Technology, 1998, 16(1): 18-26.
    [37] Young K J, Vincent P H. Turbo-coded optical direct-detection CDMA system with PPM modulation[J]. Journal of Lightwave Technology, 2001, 19(3): 312-323.
    [38]
    [39] Liu Danpin. The research on method of obtaining the high precision pointing information in space optical Communicaton[D]. Chendu: University of Electronic Science and Technology of China, 2005. (in Chinese)
    [40]
    [41] Bernard Laurent, Gilles Planche. SILEX overview after flight terminals campaigh[C]//SPIE, 1997, 2990: 10-22.
    [42]
    [43] Fenner W R. Future trends in crosslink communications[C]//SPIE, 1993, 1866: 1-8.
    [44]
    [45]
    [46] Gotthard O. SILEX program status-a major milestone is reached[C]//SPIE, 1997, 2990: 2-9.
    [47] Bondurant R S, Boroson D M. Overview of lasercom program at Lincoln laboratory[C]//SPIE, 1995, 23(81): 2-3.
    [48]
    [49] Divsalar D. Gagliardi R M, Yuen J. PPM performance for Rees-solomon decoding over an optical-Rf relay link[J]. IEEE Transactions on Communications, 1984, 32(3): 302-305.
    [50]
    [51] Koh Y, Davidson F. Interleaved concatenated coding for the turbulent atmospheric direct detection optical communication channel[J]. IEEE Transactions on Communications, 1989, 37(6): 648-651.
    [52]
    [53] Hyuncheol Park, Barry J R. Trellis-coded multiple-pulse-position modulation for wireless infrared communications[J]. IEEE Transactions on Communications, 2004, 52(4): 643-651.
    [54]
    [55]
    [56] Seki K, Mikami K, Katayama A, et al. Single-chip FEC code using a concatenated BCH code for 10 Gb/s long-haul optical communication systems[C]//IEEE 2003 Custom in Integrated Circuits Conference, 2003: 279-280.
    [57] Cai Yi, Morris J M, Adali T, et al. On Turbo code decoder performance in optical-fiber communication systems with dominating ASE noise[J]. Journal of Light Wave Technology, 2003, 21(3): 727-734.
    [58]
    [59] Chirta K, Ravichandran V C. Turbo-coding of coherence multiplexed optical PPM CDMA system with balanced detection[J]. American Journal of Applied Sciences, 2007, 4(5): 264-268.
    [60]
    [61]
    [62] Sahuguede S, Fafchamps D, Julien-Vergonjanne A, et al. LDPC code design and performance analysis on OOK Chi-Square-Based optical channels[J]. IEEE Photonics Technology Letters, 2009, 21(17):1190-1192.
    [63] Davidson F M, Koh Y T. Interleaved convolution coding for the turbulent atmospheric optical communication channel[J]. IEEE Transactions on Communications, 1988, 36: 993-1003.
    [64]
    [65] Magarini M, Essiambre R J, Basch B E, et al. Concatenated coded modulation for optical communications systems[J]. IEEE Photonics Technology Letters, 2010, 22(16): 1244-1246.
    [66]
    [67] Djordjevic I B, XuLei, Wang Ting. Reverse concatenated coded modulation for high-speed optical communication[J]. IEEE Photonics Journal, 2010, 2(6): 1034-1039.
    [68]
    [69] Wilson K E. Results of the compensated Earth-Moon-Earth retro-reflector laser link(CEMERLL) experiment[R]. TDA Progress Report, 1997, 42-131: 1-13.
    [70]
    [71]
    [72] Kim I I. Scintillation reduction using multiple transmitters[C]//SPIE, 1997: 102-113.
    [73] Kim I I, Woodbridge E L, Chan V J, et al. Scintillation measurements performed during the limited-visibility lasercom experiment[C]//SPIE, 1998: 209-220.
    [74]
    [75] Kim I I, Mitchell M, Korevaar, et al. Measurement of scintillation for free space laser communication at 785 nm and 1 554 nm[C]//SPIE, 1999: 49-62.
    [76]
    [77] Kim I I, Koontz J, Hakakha H, et al. Measurement of scintillation and link margin for the terralink laser communication system[C]//SPIE, 1999: 100-118.
    [78]
    [79] Wilson K E. Results from Phase-l and Phase-2 GOLD experiments[R]. TDA Progress Report, 1997: 42-128.
    [80]
    [81] Strohbehn J W. Laser Beam Propagation in the Atmosphere[M]. New York: Spring-Verlag Berlin Heidelberg, 1978.
    [82]
    [83] Tatarskii V I. Wave Propagation in a Turbulent Medium[M]. New York: McGraw, 1961.
    [84]
    [85]
    [86] Ibrahim M M, Ibrahim A M. Performance analysis of optical receivers with space diversity reception[J]. IEEE Proc Commun, 1996, 143(6): 369-372.
    [87] Nykolak G. A 40 Gbps DWDM free space optical transmission link over 4.4 km[C]//SPIE, 2000: 16-20.
    [88]
    [89] Biswas A, Wright M W. Mountain-top-to-mountain-Top Optical Link Demonstration[R]. Part I IPN Progress Report, 2002: 42-149.
    [90]
    [91]
    [92] Vilnrotter V, Lau C W, Andrews K, et al. Real-time combining of optical array signals[C]//SPIE, 2006, 6105:610508-610501-610508-610511.
    [93] Vilnrotter V, Lau C W, Andrews K, et al. Two-element optical array receiver concept demonstration[C]//SPIE, 2005: 225-239.
    [94]
    [95]
    [96] Vilnrotter V, Lau C W, Srinivasan M, et al. Optical array receiver for communication through atmospheric turbulence[J]. IEEE Journal of Lightwave Technology, 2005, 23(4):1664-1675.
    [97] Vilnrotter V. Optical communications through atmospheric turbulence using photo-detector arrays[C]//SPIE, 2001: 282-292.
    [98]
    [99]
    [100] Haas S M, Shapiro J H. Capacity of wireless optical communication[J]. IEEE Journal on Selected Areas in Communications, 2001, 21(8): 1346-1357.
    [101] Ma Dongtang, Wei Jibo, Zhang Zaowen. Space laser communication and application[J]. Semiconductor Optoelectronics, 2003, 24(2): 139-144. (in Chinese)
    [102]
    [103] Haas S M, Shapiro J H, Tarokh V. Space-time codes for wireless optical channels[J]. IEEE Transactions on Information Theory, 2001: 244.
    [104]
    [105]
    [106] Zhu Xiaoming, Kahn J M, Wang Jin. Mitigation of turbulence-induced scintillation noise in free-space optical links using temporal-domain detection techniques[J]. IEEE Photonics Technology Letters, 2003, 15(4): 623-625.
    [107] Zhu Xiaoming, Kahn J M. Free-space optical communication through atmospheric turbulence channels[J]. IEEE Transactions on Communications, 2002, 50(8): 1293-1300.
    [108]
    [109] Simon M K, Vilnrotter V A. Alamouti-type space-time coding for free-space optical communication with direct detection[R]. IPN Progress Report, 2003, 42-156: 1-9.
    [110]
    [111]
    [112] Alqudaha Yazan A, Kavehrad M. Orthogonal spatial coding in indoor wireless optical link reducing power and bandwidth requirements[C]//SPIE, 2003: 237-245.
    [113]
    [114] Feng P, Jing M, Liying T, et al. Scintillation characterization of multiple transmitters for ground-to-satellite laser communication[C]//SPIE, 2004: 448-454.
    [115] Wilson S G, Brandt-Pearce M, Cao Q. Optical MIMO transmission with Q-ary PPM for atmosphere channel[J]. IEEE Transactions Communications, 2004, 53(8): 1090-1094.
    [116]
    [117] Mait Brandt-Pearce, Stephen Wilson, Qianling Cao, et al. Code design for optical MIMO systems over fading channels[C]//Proceedings of the 38th Asilomar Conference on Signals, Systems Computers, 2004: 871-875.
    [118]
    [119]
    [120] Simon M K, Vilnrotter V. Alamouti-type space-time coding for free-space optical communication with direct detection[J]. IEEE Transactions on Wireless Communications, 2005, 4(1):35-39.
    [121] Anguita Jaime A, Neifeld Mark A, Vasic B V. Multi-beam space-time coded systems for optical atmospheric channels[C]//SPIE, 2006: 63041B-63041-63041B-63049.
    [122]
    [123] Anguita Jaime A, Neifeld Mark A, Vasic B V. Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space optical communication link [J]. Applied Optics, 2007, 46(26): 6561-6571.
    [124]
    [125]
    [126] Navidpour S M, Uysal M, Mohsen M. BER performance of free-space optical transmission with spatial diversity[J]. IEEE Transactions on Wireless Communications, 2007, 6(8): 2813-2819.
    [127]
    [128] Qianling Cao, Mait Brandt-Pearce, Wilson S G. Free space optical MIMO system using PPM modulation and a single optical amplifier[J]. Communications and Networking in China, 2007: 508-512.
    [129] Garca-Zambrana A. Error rate performance for STBC in free space optical communications through strong atmospheric turbulence[J]. IEEE Communication Letters, 2007, 11(5):390-392.
    [130]
    [131] Cvije Tic Neda, Wilson Stephen G, Brandt-Pearce Maite. Performance bounds for free-space optical MIMO systems with APD receivers in atmospheric turbulence[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(3):3-11.
    [132]
    [133]
    [134] Chakraborty K. Outage capacity of MIMO poisson fading channel[J]. IEEE Transactions on Information Theory, 2008, 54(11): 4887-4907.
    [135]
    [136] Nick Letzepis, Ian Holland, Cowley W. The Gaussian free space optical MIMO channel with Q-ary pluse position modulation[J]. IEEE Transactions on Wireless Communications, 2008, 7(5): 1744-1753.
    [137] Majid Safari, Uysal M. Do we really need OSTBCs for free-space optical communication with direct detection[J]. IEEE Transactions on Wireless Communications, 2008, 7(11): 4445-4448.
    [138]
    [139]
    [140] Zaidi S A R, Hafeez M. Cross layer design for orthogonal space time block coded optical MIMO systems[C]//WOCN'08. Wireless and optical communications networks, 2008: 1-5.
    [141] Ntogari G, Kamalakis T, Sphicopoulos T. Performance analysis of space time block coding techniques for indoor optical wireless systems[J]. IEEE Journal on Selected Areas in Communications, 2009, 27(9): 1545-1552.
    [142]
    [143] Ehsan Bayaki, Robert Schober. On space-time coding for free-space optical systems[J]. IEEE Transactions on Wireless Communications, 2010, 58(1): 58-62.
    [144]
    [145]
    [146] Antonio Garca-Zambrana, Carmen Castillo-Vzquez, Beatriz Castillo-Vzquez. Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels[J]. Optics Express, 2010, 18(6): 5356-5366.
    [147] Qiang Xiwen, Wang Tieliang, Wu Naiqing. Multi-laser-beam atmospheric propagation[J]. Optoelcfronic Technology, 1999, 19(3): 167-172. (in Chinese)
    [148]
    [149] Liu Weihui, Wu Jian. Influence of space between atmospheric channels and beams'number on scintillation[J]. Optics Optoelectronic, 2003, 1(4): 15-17. (in Chinese)
    [150]
    [151] Liu Weihui, Wu Jian. Influence of multiple partially coherent beams through strong turbulence on light intensity scintillation[J]. Optoelectronic Engineering, 2004, 31(4): 5-8. (in Chinese)
    [152]
    [153] Ma Dongtang. Study on multiple-beam transmission and reception techniques for atmospheric laser communication[D]. National University of Defense Technology, 2004. (in Chinese)
    [154]
    [155] Ma Dongtang, Hua Weiling, Wei Jibo. Analysis of the laser diodes'temperature field in multiple-beam atmospheric Laser communications[J]. Journal of Optoelectronics Laser, 2004, 15(12): 1449-1451. (in Chinese)
    [156]
    [157] Ma Dongtang, Wei Jibo, Zhuang Zhaowen. Performance evaluation and channel modeling of multiple-beam propagation for atmospheric laser communication[J]. Acta Optica Sinica, 2004, 24(8): 1020-1024. (in Chinese)
    [158]
    [159]
    [160] Chen Gang, Dong Zuoren, Geng Jianxin, et al. 155/622 Mb/s multiple transmitter laser communication systems[J]. Chinese Journal of Lasers, 2004, 31(5): 583-587. (in Chinese)
    [161] Deng Daizhu, Guo Huafu. Application of multiple transmitters in atmospheric laser communication[J]. Optics Optoelectronic, 2005, 3(4): 13-15. (in Chinese)
    [162]
    [163]
    [164] Wu Changqi, Pan Jimin, Yu Rongjin. Atmospheric optical communication with optimal selection diversity[J]. Infrared and Laser Engineering, 2005, 34(1): 114-126. (in Chinese)
    [165]
    [166] He Jian, Hu Yanjun. Performance analysis of wireless optical MIMO communications based on SVD[J]. Journal of Anhui University, 2007, 31(3): 34-37. (in Chinese)
    [167]
    [168] Zheng Zheng, Li Ning. Diversity detection algorithms in laser communications[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(3): 280-284. (in Chinese)
    [169]
    [170] Tian Zairong, Zhou Huaibei. Structure and performance of space-time block code. Wireless Communications[J]. Networking and Mobile Computing, 2006: 1-4.
    [171] Chen Jianwen. Research on laser's transmission channels and properties improvement of optical communication in the atmosphere[D]. Wuhan: Huazhong University of Science and Technology, 2007. (in Chinese)
    [172]
    [173] Deng Tianpin. Research on the key technology of FSO system[D]. Wuhan: Huazhong University of Science and Technology, 2007. (in Chinese)
    [174]
    [175] Zhang Hongliang. The research of the space-time code basede on launch diversity for atomospheric laser communication[D]. Changchun: Changchun University of Science and Technology, 2008. (in Chinese)
    [176]
    [177]
    [178] Chen Chunyi. Study on mechanism and mitigation technology of atmospheric effects in optical wireless communications[D]. Changchun: Changchun University of Science and Technology, 2009. (in Chinese)
    [179] Ke Xizheng, Song Peng, Pei Guoqiang. Research on multi-aperture reception in wireless laser communication[J]. Acta Optica Sinica, 2011, 12: 22-28. (in Chinese)
    [180]
    [181] Ke Xizheng, Chen Juan, Pei Guoqiang. Multiple-beam transmission techniques for wireless laser communication[J]. Opto-Electronic Engineering, 2012, (7): 1-7. (in Chinese)
  • [1] 郭盈池, 李浪, 李晨, 高春清, 付时尧.  面向星地激光通信的大气湍流预报研究进展(特邀) . 红外与激光工程, 2024, 53(3): 20230729-1-20230729-13. doi: 10.3788/IRLA20230729
    [2] 朱伟鸿, 汪洋, 王栎皓, 刘艺晨, 武震宇.  卫星激光通信MEMS快速反射镜可靠性研究进展 . 红外与激光工程, 2023, 52(9): 20230179-1-20230179-13. doi: 10.3788/IRLA20230179
    [3] 王超, 董怡泽, 王卉婷, 高冀, 田志新, 高建威, 江宁.  混沌空间光通信研究进展 . 红外与激光工程, 2023, 52(1): 20220296-1-20220296-10. doi: 10.3788/IRLA20220296
    [4] 赵双易, 莫琼花, 汪百前, 臧志刚.  无机钙钛矿白光LED及可见光通信研究进展(特邀) . 红外与激光工程, 2022, 51(1): 20210772-1-20210772-20. doi: 10.3788/IRLA20210772
    [5] 郑运强, 刘欢, 孟佳成, 王宇飞, 聂文超, 武军霞, 蔚停停, 魏森涛, 袁站朝, 汪伟, 谢小平.  空基激光通信研究进展和趋势以及关键技术 . 红外与激光工程, 2022, 51(6): 20210475-1-20210475-13. doi: 10.3788/IRLA20210475
    [6] 文豪, 曹阳, 党宇超.  无线光通信下极化码DNN-NOMS译码方法研究 . 红外与激光工程, 2022, 51(5): 20210420-1-20210420-11. doi: 10.3788/IRLA20210420
    [7] 李金佳, 叶德茂, 王林宁, 傅康, 王永进.  PMT阵列在水下MIMO无线光通信中的应用 . 红外与激光工程, 2021, 50(8): 20200382-1-20200382-9. doi: 10.3788/IRLA20200382
    [8] 张雨凡, 徐敬.  海洋光学系统中的时空方法 . 红外与激光工程, 2020, 49(2): 0203003-0203003. doi: 10.3788/IRLA202049.0203003
    [9] 柯熙政, 解孟其, 石碧瑶.  无线光通信系统中64-QAM调制实验研究 . 红外与激光工程, 2018, 47(S1): 68-73. doi: 10.3788/IRLA201847.S122003
    [10] 曹阳, 任发韬, 彭小峰, 张勋, 陈果.  自由空间光通信中的CRC-LT编码性能研究 . 红外与激光工程, 2018, 47(11): 1122003-1122003(7). doi: 10.3788/IRLA201847.1122003
    [11] 柯熙政, 张棋雯.  FSO-WOFDM系统的实验研究 . 红外与激光工程, 2018, 47(10): 1022003-1022003(7). doi: 10.3788/IRLA201847.1022003
    [12] 柯熙政, 张雅.  高斯阵列光束自耦合特性的实验研究 . 红外与激光工程, 2017, 46(8): 822003-0822003(9). doi: 10.3788/IRLA201746.0822003
    [13] 柯熙政, 李梦帆.  无载波幅度相位调制无线光通信系统研究 . 红外与激光工程, 2017, 46(12): 1222004-1222004(8). doi: 10.3788/IRLA201746.1222004
    [14] 王惠琴, 肖博, 孙剑锋, 贾非, 曹明华.  适合于强度调制/直接检测式大气激光通信的空时网格码 . 红外与激光工程, 2016, 45(6): 622003-0622003(6). doi: 10.3788/IRLA201645.0622003
    [15] 金伟其, 陶禹, 石峰, 李本强.  微光视频器件及其技术的进展 . 红外与激光工程, 2015, 44(11): 3167-3176.
    [16] 陈丹, 柯熙政, 乔薇.  基于子空间的无线光通信副载波盲均衡算法研究 . 红外与激光工程, 2015, 44(8): 2528-2534.
    [17] 柯熙政, 雷思琛, 邵军虎, 陈强.  基于极化码的无线光通信副载波误码性能分析 . 红外与激光工程, 2015, 44(6): 1849-1853.
    [18] 柯熙政, 谌娟, 李征.  无线光通信中的空时编码研究进展(三) . 红外与激光工程, 2013, 42(9): 2496-2504.
    [19] 柯熙政, 谌娟, 陈丹.  无线光通信中的空时编码研究进展(四) . 红外与激光工程, 2013, 42(10): 2765-2771.
    [20] 柯熙政, 袁蕾, 李芳.  无线光通信中的空时编码研究进展(二) . 红外与激光工程, 2013, 42(8): 2137-2145.
  • 加载中
计量
  • 文章访问数:  375
  • HTML全文浏览量:  45
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-20
  • 修回日期:  2012-12-25
  • 刊出日期:  2013-07-25

无线光通信中的空时编码研究进展(一)

    作者简介:

    柯熙政(1962-),男,教授,主要从事无线激光通信方面的研究。Email:xzke@263.net

基金项目:

国家自然科学基金(60977054);陕西省教育厅产业化培育项目(2010JC17)

  • 中图分类号: TN929.12

摘要: MIMO技术在射频通信领域已被深入研究,使空间成为一种可以用于提高通信性能的资源。无线光通信与射频通信在调制/解调方法、信道特性诸方面有很大的差异。文中评述了国内外有关无线光MIMO技术的研究进展,对无线光MIMO的提出背景进行了详细分析,最后通过实验说明了MIMO对大气湍流的抑制效应。实验结果表明:无线光MIMO不但使空间成为一种资源,提高了无线光通信的信道容量,而且可以抑制大气湍流效应,扩大了无线光通信的应用场合。

English Abstract

参考文献 (181)

目录

    /

    返回文章
    返回