留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光泵浦远红外气体激光器的研究发展

曲彦臣 陈惠颖 耿利杰 赵卫疆

曲彦臣, 陈惠颖, 耿利杰, 赵卫疆. 光泵浦远红外气体激光器的研究发展[J]. 红外与激光工程, 2014, 43(4): 1099-1105.
引用本文: 曲彦臣, 陈惠颖, 耿利杰, 赵卫疆. 光泵浦远红外气体激光器的研究发展[J]. 红外与激光工程, 2014, 43(4): 1099-1105.
Qu Yanchen, Chen Huiying, Geng Lijie, Zhao Weijiang. Research and development for optically pumped far-infrared gas laser[J]. Infrared and Laser Engineering, 2014, 43(4): 1099-1105.
Citation: Qu Yanchen, Chen Huiying, Geng Lijie, Zhao Weijiang. Research and development for optically pumped far-infrared gas laser[J]. Infrared and Laser Engineering, 2014, 43(4): 1099-1105.

光泵浦远红外气体激光器的研究发展

基金项目: 

中央高校基本科研业务费专项资金资助(HIT.NSRIT.2014043)

详细信息
    作者简介:

    曲彦臣(1971- ),男,副教授,博士生导师,主要从事可调谐CO2激光和光泵远红外气体激光等方面的研究。Email:quyanchen@hit.edu.cn

  • 中图分类号: TN248.2

Research and development for optically pumped far-infrared gas laser

  • 摘要: 远红外激光具有穿透性强、光子能量低、带宽宽、通信传输容量大等优点,在公共安全、环境探测、生物医学、天文观测、军事以及通信等方面得到了广泛应用。在介绍了远红外波段激光器发展的基础之上,对产生远红外激光的各种方式进行了对比分析和总结,讨论了光泵浦远红外气体激光器的技术优势,并针对近年来远红外激光工作介质及其新谱线进行了归纳。通过对连续和脉冲光泵浦远红外气体激光器发展的回顾,结合该领域的一些重点研究方向,给出了未来光泵浦远红外气体激光器的研究趋势。
  • [1]
    [2] Fan W H, Burnett A, Upadhya P C, et al. Far-infrared spectroscopic characterization of explosives for security applications using broadband terahertz time-domain spectroscopy[J]. Appl Spectrosc, 2007, 61(6): 638-643.
    [3]
    [4] Radoslaw Ryniec, Przemyslaw Zagrajek, Tomasz Trzcinski, et al. Explosives identification model in reflection mode for THz security system [C]//SPIE, 2011, 8119 (4): 811904-1-819904-6.
    [5]
    [6] Endres C P, Muller H S P, Brunken S, et al. High resolution rotation-inversion spectroscopy on doubly deuterated ammonia, ND2H, up to 2.6 THz [J]. Journal of Molecular Structure, 2006, 795(1-3): 242-255.
    [7] Peter H, Siegel, Pikov V. THz in biology and medicine: towards quantifying and understanding the interaction of millimeter and submillimeter-waves with cells and cell processes [C]//SPIE, 2010, 7562: 75620H-1-75620H-13.
    [8]
    [9]
    [10] Pikov V, Siegel P H. Remote temperature monitoring of cells exposed to millimeter wave radiation using microscopic Raman spectroscopy [J]. Engineering in Medicine and Biology Magazine, 2010: 1-28.
    [11]
    [12] Francisco S. Determination of death thresholds and identification of terahertz (THz)-specific gene expression signatures [C]//SPIE, 2010, 7562: 75620K.
    [13]
    [14] Watanabe K, Murakami H. GaAs extrinsic photoconductors for the terahertz astronomy[C]//SPIE, 2007, 6840: 68401F.
    [15] Liang Y Q, Fan W H. Image enhancement techniques used for THz imaging [C]//SPIE, 2011, 8195: 819515-1-819515-6.
    [16]
    [17] Rieh J S, Jeon S, Kim M. An overview of integrated THz electronicsfor communication applications [C]//MWSCAS, 2011 IEEE 54th International Midwest Symposium, 2011: 1-4.
    [18]
    [19] Chang T Y, Brdge T J. Laser action at 452, 496 and 541m in optically pumped CH3F [J]. Opt Commun, 1970, 9: 423-426.
    [20]
    [21] Yamanaka M, Homma Y, Tanaka A, et al. On the transverse mode in an optically pumped far-infrared NH3 laser[J]. Appl Phys, 1974, 13: 843-850.
    [22]
    [23] Tucker J R. Theory of an FIR gas laser [C]//International Conference on Submillimeter Waves and their Applications, 1974: 17-18.
    [24]
    [25] Henningsen J O, Jensen H G. The optically pumped far-infrared laser: rate equations and diagnostic experiments [J]. Quantum Electron, 1975, 11(6): 248-252.
    [26]
    [27]
    [28] DeTemple T A, Danielewicz E J. Continuous-wave CH3F waveguide laser at 496 m: theory andexperiment [J]. Quantum Electron, 1976, 12(1): 40-47.
    [29] Temkin R J, Cohn D R. Rate equations for an optically pumped far infrared laser [J]. Opt Commun, 1976, 16 (2): 213-217.
    [30]
    [31] Tucker J R. Absorption saturation and gain in pulsed CH3F lasers[J]. Opt Commun, 1976, 16(2): 209-212.
    [32]
    [33] Koepf G A, Smith K. The CW 496 m methylfluoride laser: review and theoretical predictions [J]. Quantum Electron, 1978, 14(5): 333-338.
    [34]
    [35]
    [36] Evans D E, Sharp L E, Peebles W A, et al. Far-infrared super-radiant laser action in heavy water [J]. Opt Commun, 1976, 18(4): 479-484.
    [37]
    [38] Evans D E, Guinne R A, Huckridge D A, et al. Time-resolved pulses and wavelength measurements for the 114m and 66m emissions in the fir superradiant D2O laser [J]. Opt Commun, 1977, 22(2): 337-342.
    [39] Weber M J. Handbook of Laser Science and Technology, vol. II: Gas Lasers [M]. Boca Raton: CRC Press, 1982.
    [40]
    [41] Tanaka A, Tanimoto A, Murata N, et al. CW efficient optically-pumped far-infrared waveguide NH3 lasers[J]. Opt Commun, 1977, 22: 17-21.
    [42]
    [43] Schatz W. Generation of tunabie far-infrared radiation by opticai-pumping moiecuiar gas-iasers [J]. Infrared Physics Technology, 1995, 36(1): 387-393.
    [44]
    [45]
    [46] DeMichele A, Moretti A, Pereira D. Optically pumped 13CD3I: new Terahertz laser transitions [J]. Appl Phys B, 2011, 103: 659-662.
    [47] Vasconcellos E C C C, Jackson M, Hockel H, et al. Discovery and measurement of optically pumped far-infrared laser emissions in 13CD3OH[J]. Applied Physics B, 2003, 77 (6-7): 561-562.
    [48]
    [49]
    [50] Costa L F L, Moraes J C S, Cruz F C, et al. CH3OH optically pumped by a 13CO2 laser:new laser lines and assignments[J]. Applied Physics B, 2007, 86(4): 703-706.
    [51]
    [52] Costa L F L, Moraes J C S, Cruz F C, et al. Infrared and far-infrared spectroscopy of 13CH3OH: TeraHertz laser lines and assignments [J]. Journal of Molecular Spectroscopy, 2007, 241(2): 151-154.
    [53]
    [54] Jackson M, Petersen T, Zink L R. Frequencies and wavelengths from a new far-infrared lasing gas:13CHD2OH
    [55] Jackson M, Nichols A J, Artagnon D, et al. First laser action observed from optically pumped CH317OH[J].Quantum Electronics, 2012, 48(3): 303-306.
    [J]. Quantum Electronics, 2009, 45(7): 830-832.
    [57]
    [58] Keilmann F, Sheffield R L, Leite J R R, et al. Optical pumping and tunable laser spectroscopy of the v2 band of D2O[J]. Appl Phys Lett, 1975, 26: 19-22.
    [59]
    [60] Evans D E, Sharp L E. Far-infrared super-radiant laser action in heavy water [J]. Optics Communications, 1976, 18 (4): 479-484.
    [61]
    [62] De Michele A, Carelli G, Moretti A, et al. A new pulsed CO2 laser yielding new FIR laser lines from CH3OD pumped by the 10 P and 10 HP lines [J]. Phys B: At Mol Opt Phys, 2004, 37: 1979-1984.
    [63] Danielewicz E J, Plant T K, DeTemple T A. Hybrid output mirror for optically pumped far-infrared lasers [J]. Opt Commun, 1975, 13: 366-369.
    [64]
    [65]
    [66] Crenn J P, Veron D, Belland P. Theory of the transmission of metal strip gratings on a dielectric substrate: application to submillimeter laser coupling [J]. Infrared Milimeter Waves, 1986, 7: 1747-1767.
    [67]
    [68] Veron D, Whitbourn L B. Strip gratings on dielectric substrates as output couplers for submillimeter lasers[J]. Appl Opt, 1986, 25: 619-628.
    [69] Bowden M D, James B W, Falconer I S, et al. Annular slot array output couplers for submillimetrelasers [J]. Opt Commun, 1992, 89: 419-422.
    [70]
    [71] Densing R, Erstling A, Gogolewski M, et al. Effective far infrared laser operation with mesh couplers[J]. Infrared Phys, 1992, 33: 219-226.
    [72]
    [73]
    [74] Hodges D T, Foote F B, Reel R D. Effieient high-Power operation of the cw far-infrared waveguide laser [J]. Appl phys Lett, 1976, 29(10): 662-664.
    [75] Chang T Y, Lin C. Effects of buffer gases on an optically pumped CH3F FIR laser [J]. Opt Soc Am, 1976, 66: 362-369.
    [76]
    [77]
    [78] Hodges D T, Foote F B, Reel R D. High power operation and scaling behavior of CW optically pumped FIR waveguide lasers[J]. Quantum Electron, 1977, 13: 491-494.
    [79]
    [80] Mansfield D K, Horlbeck E, Bennett C L, et al. High power operation of the 119m line of optically pumped CH3OH[J]. Infrared Millimeter Waves, 1985, 6: 867-876.
    [81] Plant T K, Newman L A, Danielewitz E J, et al. High power optically pumped far infrared lasers [J]. Microwave Theory Tech, 1974, 22: 988-990.
    [82]
    [83]
    [84] Evans D E, Sharp L E, James B W, et al. Far-in-frared superradiant laser action in methyl fluoride [J]. Appl Phys Lett, 1975, 26: 630-632.
    [85]
    [86] Semet A, Johnson L C, Mansfield D K. A high energy D2O submillimeter laser for plasma diagnostics [J]. Infrared Millimeter Waves, 1983, 4: 231-316.
    [87] Nishi Y, Murai A. FIR laser emissions from population inversion transition by TEA-CO2 laser pumping [J]. Infrared Millimetre Waves, 1990, 11(2): 309-322.
    [88]
    [89]
    [90] Fetterman H R, Schlossberg H R, Waldman J. Submillimeter lasers optically pumped off resonance [J]. Opt Commun, 1972, 6: 156-159.
    [91] Panock R L, Temkin R J. Interaction of two laser fields with a three-level molecular system [J]. Quantum Electron, 1977, 13: 425-434.
    [92]
    [93]
    [94] Petuchowski S J, Rosenberger A T, DeTemple T A. Stimulated Raman emission in infrared excited gases [J]. Quantum Electron, 1977, 13: 476-481.
    [95]
    [96] Biron D G, Temkin R J, Lax B, et al. High-intensity CO2 laser pumping of a CH3F Raman FIR laser [J]. Opt Lett, 1979, 4: 381-383.
    [97]
    [98] Mathieu P, Izatt J R. Continuously tunable CH3F Raman farinfrared laser[J]. Opt Lett, 1981, 6: 369-371.
    [99]
    [100] Danly B G, Evangelides S G, Temkin R J, et al. A tunable far infrared laser[J]. Quantum Electron, 1984, 20: 834-837.
    [101] DeTemple T. Pulsed optically pumped far infrared lasers [J]. Infrared and Millimeter Waves, 1979(1): 129-184.
    [102]
    [103] Lee S H, Petuchowski S J, Rosenberger A T, et al. Synchronous, mode-locked pumping of gas lasers [J]. Opt Lett, 1979, 4: 6-8.
    [104]
    [105]
    [106] Lemley W, Nurmikko A V. High-intensity subnanosecond transients from synchronously pumped submillimeter-waves lasers[J]. Appl Phys Lett, 1979, 35: 33-35.
    [107]
    [108] Lemley W, Nurmikko A V. Generation of ultrashort pulses in synchronous pumping of near-millimeter wave lasers [J]. International Journal of Infrared and Millimeter Waves, 1980, 1(1): 85-94.
    [109] Rosenberger, Chung H K, DE Temple. Sub-T2 optical pulse generation:application to optically pumped far-infrared lasers
    [110]
    [111] Lang P T, Schatz W, Renk K F. Generation of subnanosecond far-infrared laser pulses in a large spectral range with a Raman D2O laser optically pumped by a continuously tunable CO2 laser [J]. Opt Commun, 1991, 84: 29-36.
    [112]
    [113]
    [114] Lang P T. Generation of tunable high power far-infrared radiation by stimulated Raman scattering in gaseous methyl-halides[J]. Infrared Phys, 1992, 33: 237-262.
    [115] Lang P T, Heusinger M A, Kass T, et al. Efficient generation of FIR radiation by optical pumping of D2 18O[J]. Appl Phys B, 1992, 55: 347-354.
    [J].Quantum Electron, 1984, 20(5): 523-532.
    [117]
    [118] Everitt H O, Skatrud D D, DeLucia F C. Dynamics and tunability of a small optically pumped CW far-infrared laser
    [119] Luo Xizhang, Zheng Xingshi. A unified miniature optically pumped NH3 FIR cavity laser [J]. J Infrared Millim Waves, 1998, 17(4): 299-302. (in Chinese) 罗锡璋, 郑兴世. 一体化的小型腔式光泵NH3 分子远红外 激光器[J]. 红外与毫米波学报, 1998, 17(4): 299-302.
    [120]
    [121]
    [122] Behn R, Marc-Andge Dopertuis, Ivar Khelaerg, et al. Buffer gases to increase the efficiency of an optically pumped far infraed D2O laser[J]. IEEE Journal of Quantum Electronics, 1985, 21(8): 1278-1285.
    [123]
    [124]
    [J]. Appl Phys Lett, 1986, 49: 995-997.
    [126]
    [127]
  • [1] 韩赵其智, 葛正, 王小骅, 周志远, 史保森.  基于啁啾极化晶体的中红外上转换成像研究 . 红外与激光工程, 2024, 53(3): 20230585-1-20230585-9. doi: 10.3788/IRLA20230585
    [2] 卞进田, 孔辉, 叶庆, 姚吉勇, 吕国瑞, 徐海萍, 周权, 温凯华.  高转换效率的中红外BaGa4Se7光参量振荡器(特邀) . 红外与激光工程, 2023, 52(6): 20230178-1-20230178-9. doi: 10.3788/IRLA20230178
    [3] 黄佳裕, 林海枫, 闫培光.  高效率宽调谐扇形MgO: PPLN中红外光参量振荡器 . 红外与激光工程, 2023, 52(5): 20220605-1-20220605-6. doi: 10.3788/IRLA20220605
    [4] 康丁, 王春阳, 王子硕, 王增, 郑青泉.  基于样条插值的液晶空间光调制器衍射效率优化方法研究 . 红外与激光工程, 2022, 51(9): 20210827-1-20210827-10. doi: 10.3788/IRLA20210827
    [5] 王菲.  高稳定度光泵浦腔内倍频488 nm半导体薄片激光器 . 红外与激光工程, 2019, 48(6): 606004-0606004(5). doi: 10.3788/IRLA201948.0606004
    [6] 胡星, 程德江, 郭芷妍, 姜梦华, 惠勇凌, 雷訇, 李强.  914 nm LD泵浦RTP电光调Q的高效率Nd:YVO4激光器 . 红外与激光工程, 2019, 48(1): 105001-0105001(5). doi: 10.3788/IRLA201948.0105001
    [7] 范灏然, 于永吉, 朱贺, 邢爽, 王宇恒, 金光勇.  500 kHz波长锁定878.6 nm LD双端泵浦Nd:YVO4声光调Q激光器 . 红外与激光工程, 2018, 47(6): 606001-0606001(7). doi: 10.3788/IRLA201847.0606001
    [8] 余光其, 王鹏, 宋伟, 刘奎永.  光纤激光泵浦的多波长中红外光参量振荡器 . 红外与激光工程, 2018, 47(4): 404003-0404003(7). doi: 10.3788/IRLA201847.0404003
    [9] 胡以华, 黄宝锟, 顾有林, 赵义正.  生物颗粒远红外波段平均消光效率因子模型构建 . 红外与激光工程, 2018, 47(10): 1004003-1004003(7). doi: 10.3788/IRLA201847.1004003
    [10] 尚金铭, 张宇, 杨成奥, 谢圣文, 黄书山, 袁野, 张一, 邵福会, 徐应强, 牛智川.  GaSb基光泵浦半导体碟片激光器的研究进展(特邀) . 红外与激光工程, 2018, 47(10): 1003004-1003004(9). doi: 10.3788/IRLA201847.1003004
    [11] 丁欣, 赵岑, 姜鹏波, 盛泉, 李斌, 刘简, 孙冰, 姚建铨.  914nm共振泵浦高效率主动调QNd:YVO4自拉曼激光器 . 红外与激光工程, 2017, 46(10): 1005001-1005001(7). doi: 10.3788/IRLA201752.1005001
    [12] 刘晓光, 华文深, 刘恂, 郭彤.  激光供能无人机光伏接收器效率优化方法 . 红外与激光工程, 2016, 45(3): 306002-0306002(5). doi: 10.3788/IRLA201645.0306002
    [13] 宋朋, 王静, 张海鹍, 周城, 刘仕鹏, 吕峰.  锁模激光泵浦的内腔光参量振荡器的中红外输出特性 . 红外与激光工程, 2016, 45(S2): 1-4. doi: 10.3788/IRLA201645.S206001
    [14] 丁欣, 张巍, 刘俊杰, 盛泉, 李斌, 刘简, 姜鹏波, 孙冰, 赵岑, 姚建铨.  880nm同带泵浦的高效率Nd:YVO4自拉曼激光器 . 红外与激光工程, 2016, 45(1): 105002-0105002(6). doi: 10.3788/IRLA201645.0105002
    [15] 黄伟, 吉洪湖.  BMC 法计算航空发动机红外辐射的效率研究 . 红外与激光工程, 2015, 44(8): 2334-2338.
    [16] 王延新, 刘琪, 李兆熠, 张爱珍.  红外成像导引技术应用中若干问题的分析 . 红外与激光工程, 2014, 43(1): 26-32.
    [17] 高飞, 陈飞, 谢冀江, 张来明, 李殿军, 杨贵龙, 郭劲.  半导体泵浦铯蒸汽激光器工作特性分析 . 红外与激光工程, 2013, 42(9): 2386-2391.
    [18] 马依拉木·木斯得克, 姚建铨, 王鹏.  LD端面泵浦946 nm/473 nm连续Nd:YAG/LBO激光器 . 红外与激光工程, 2013, 42(11): 2931-2934.
    [19] 胡黎明, 朱洪波, 王立军.  高亮度半导体激光器泵浦光纤耦合模块 . 红外与激光工程, 2013, 42(2): 361-365.
    [20] 商继敏, 任宇芬.  侧面紧耦合泵浦微型激光器研究 . 红外与激光工程, 2013, 42(5): 1174-1178.
  • 加载中
计量
  • 文章访问数:  405
  • HTML全文浏览量:  68
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-14
  • 修回日期:  2013-09-15
  • 刊出日期:  2014-04-25

光泵浦远红外气体激光器的研究发展

    作者简介:

    曲彦臣(1971- ),男,副教授,博士生导师,主要从事可调谐CO2激光和光泵远红外气体激光等方面的研究。Email:quyanchen@hit.edu.cn

基金项目:

中央高校基本科研业务费专项资金资助(HIT.NSRIT.2014043)

  • 中图分类号: TN248.2

摘要: 远红外激光具有穿透性强、光子能量低、带宽宽、通信传输容量大等优点,在公共安全、环境探测、生物医学、天文观测、军事以及通信等方面得到了广泛应用。在介绍了远红外波段激光器发展的基础之上,对产生远红外激光的各种方式进行了对比分析和总结,讨论了光泵浦远红外气体激光器的技术优势,并针对近年来远红外激光工作介质及其新谱线进行了归纳。通过对连续和脉冲光泵浦远红外气体激光器发展的回顾,结合该领域的一些重点研究方向,给出了未来光泵浦远红外气体激光器的研究趋势。

English Abstract

参考文献 (127)

目录

    /

    返回文章
    返回