留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单次大气散射效应对星载激光测高仪接收脉冲回波的影响

周辉 李松 王良训 涂兰芬

周辉, 李松, 王良训, 涂兰芬. 单次大气散射效应对星载激光测高仪接收脉冲回波的影响[J]. 红外与激光工程, 2016, 45(1): 106002-0106002(7). doi: 10.3788/IRLA201645.0106002
引用本文: 周辉, 李松, 王良训, 涂兰芬. 单次大气散射效应对星载激光测高仪接收脉冲回波的影响[J]. 红外与激光工程, 2016, 45(1): 106002-0106002(7). doi: 10.3788/IRLA201645.0106002
Zhou Hui, Li Song, Wang Liangxun, Tu Lanfen. Influence of single atmospheric scattering effect on received pulse waveform of satellite laser altimeter[J]. Infrared and Laser Engineering, 2016, 45(1): 106002-0106002(7). doi: 10.3788/IRLA201645.0106002
Citation: Zhou Hui, Li Song, Wang Liangxun, Tu Lanfen. Influence of single atmospheric scattering effect on received pulse waveform of satellite laser altimeter[J]. Infrared and Laser Engineering, 2016, 45(1): 106002-0106002(7). doi: 10.3788/IRLA201645.0106002

单次大气散射效应对星载激光测高仪接收脉冲回波的影响

doi: 10.3788/IRLA201645.0106002
基金项目: 

测绘地理信息公益性行业专项(201412007,201512016);上海航天科技创新基金(SAST201422); 2014年基础测绘科技计划项目

详细信息
    作者简介:

    周辉(1979-),男,副教授,博士,主要从事激光遥感、激光测距和激光合作目标技术等方面的研究。Email:abidingmyself@163.com

  • 中图分类号: TN249

Influence of single atmospheric scattering effect on received pulse waveform of satellite laser altimeter

  • 摘要: 大气散射效应是影响星载激光测高仪接收脉冲回波的重要因素。根据星载激光测高仪接收脉冲回波信号与大气响应函数之间的关系式,在忽略大气多次散射效应的条件下,通过分析散射激光束的几何轨迹和散射概率,推导出单次大气散射激光脉冲和接收脉冲回波的特征参数的数学解析式。以地球科学激光测高仪系统参数为输入,采用数值仿真分析的方法,模拟了大气散射介质分布、激光指向角和目标倾斜角对接收脉冲回波信号特征参数的影响。结果表明,若散射介质的高度和粒子半径范围分别为0.2~6 km和0~120 m,则其对接收脉冲回波的能量、重心和均方根脉宽的影响最大值分别超过15%、250 cm和800 cm。随着激光指向角或目标倾斜角的增加,接收脉冲回波的能量基本不产生影响,但是其重心和均方根脉宽近似呈线性增加趋势。同时,采用高斯拟合方法可以减小大气散射效应对接收脉冲回波的影响。所得结论对于接收脉冲回波的数据处理与分析以及激光测距精度的评估具有一定的指导意义。
  • [1] Brenner A C, Zwally H J, Bentley C R, et al. The algorithm theoretical basis document for derivation of range and range distributions from laser pulse waveform analysis for surface elevations, roughness, slope, and vegetation heights [R]. NASA Goddard Space Flight Center, 2012.
    [2] Li X, Xu L, Tian X, et al. Terrain slope estimation within footprint from ICESat/GLAS waveform: model and method [J]. Journal of Applied Remote Sensing, 2012, 6(1): 063534-1-063534-24.
    [3] Shi J, Menenti M, Lindenbergh R. Parameterization of surface roughness based on ICESat/GLAS full waveforms: a case study on the Tibetan Plateau[J]. Journal of Hydrometeorology, 2013, 14(4): 1278-1292.
    [4] Ma Yue, Yang Fanlin, Yi Hong, et al. Calibration method of on-orbit attitude systematic error for space-borne laser altimeter of earth observation[J]. Infrared and Laser Engineering, 2015, 44(8): 2401-2405. (in Chinese)
    [5] Chen Shuhang, Li Zile, Chen Mengzhu, et al. Influence of atmospheric multiple scattering effects on the range bias for satellite laser altimeter[J]. Infrared and Laser Engineering, 2012, 41(9): 2522-2526. (in Chinese)
    [6] Yang Y, Marshak A, Vrnai T, et al. Uncertainties in ice-sheet altimetry from a spaceborne 1064-nm single-channel lidar due to undetected thin clouds[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2010, 48(1): 250-259.
    [7] Duda D P, Spinhirne J D, Eloranta E W. Atmospheric multiple scattering effects on GLAS altimetry. I. Calculations of single pulse bias[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2001, 39(1): 92-101.
    [8] Ma Y, Wang M, Yang F, et al. The waveform model of laser altimeter system with flattened Gaussian laser[J]. Journal of the Optical Society of Korea, 2015, 19(4): 363-370.
    [9] Sun X L, Abshire J B, Mcgarry J F, et al. Space lidar developed at the NASA goddard space flight center-the first 20 years[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3): 1660-1675.
    [10] Zhou Hui, Li Song, Wang Liangxun, et al. The influence of noise on range error for Satellite Laser Altimeter [J]. Infrared and Laser Engineering, 2015, 44(8): 2256-2261. (in Chinese)
  • [1] 吴鹏飞, 邓植中, 雷思琛, 谭振坤, 王姣.  基于激光散斑图像多特征参数的表面粗糙度建模研究 . 红外与激光工程, 2023, 52(12): 20230348-1-20230348-11. doi: 10.3788/IRLA20230348
    [2] 梅永康, 谢俊峰, 陈伟, 刘仁.  多特征参数约束的星载激光高程控制点提取 . 红外与激光工程, 2022, 51(9): 20210997-1-20210997-12. doi: 10.3788/IRLA20210997
    [3] 朱天豪, 周辉, 石岩, 张千胤.  星载激光测高仪多模式回波参数提取方法(特邀) . 红外与激光工程, 2022, 51(1): 20210836-1-20210836-11. doi: 10.3788/IRLA20210836
    [4] 刘斌, 谯倩, 赵静, 张子淼, 李志伟, 张宝峰.  基于高频方差熵清晰度评价函数的聚焦三维测量方法 . 红外与激光工程, 2021, 50(5): 20200326-1-20200326-9. doi: 10.3788/IRLA20200326
    [5] 周鹏, 胡成海, 毕超, 郝雪.  三轴视觉测量系统自动对焦技术 . 红外与激光工程, 2021, 50(12): 20210141-1-20210141-8. doi: 10.3788/IRLA20210141
    [6] 谢俊峰, 刘仁, 王宗伟, 莫凡, 窦显辉.  高分七号星载激光测高仪在轨几何检校与精度评估 . 红外与激光工程, 2021, 50(8): 20200396-1-20200396-11. doi: 10.3788/IRLA20200396
    [7] 程勇, 刘旭, 谭朝勇, 王赛, 韦尚方.  星载激光测高仪固体激光器技术研究与发展 . 红外与激光工程, 2020, 49(11): 20201046-1-20201046-10. doi: 10.3788/IRLA20201046
    [8] 左志强, 唐新明, 李国元, 李松.  GF-7星载激光测高仪全波形自适应高斯滤波 . 红外与激光工程, 2020, 49(11): 20200251-1-20200251-11. doi: 10.3788/IRLA20200251
    [9] 薛珊, 吕南方, 沈雨鹰, 刘正彬, 郭建波.  基于激光三维点云的机械工件识别方法 . 红外与激光工程, 2019, 48(4): 442002-0442002(8). doi: 10.3788/IRLA201948.0442002
    [10] 罗敏, 石岩, 周辉, 李松, 马跃, 张文豪, 张颖.  基于可变分量的参数随机抽样的激光雷达脉冲波形分解 . 红外与激光工程, 2019, 48(10): 1005009-1005009(8). doi: 10.3788/IRLA201948.1005009
    [11] 王平春, 陈廷娣, 周安然, 韩飞, 王元祖, 孙东松, 王国成.  基于高斯拟合的相干激光雷达风速估计算法 . 红外与激光工程, 2018, 47(12): 1230006-1230006(6). doi: 10.3788/IRLA201847.1230006
    [12] 李国元, 唐新明, 樊文锋, 窦显辉, 马跃.  基于地面红外探测器的星载激光测高仪在轨几何定标 . 红外与激光工程, 2017, 46(11): 1117004-1117004(7). doi: 10.3788/IRLA201746.1117004
    [13] 李少辉, 周辉, 倪国强.  基于星载激光测高仪多模式回波的激光测距修正值分析 . 红外与激光工程, 2017, 46(10): 1006001-1006001(8). doi: 10.3788/IRLA201759.1006001
    [14] 高雅, 周佳霖, 侯雪, 王晓飞, 王霄衣.  基于高斯拟合的高光谱影像配准算法 . 红外与激光工程, 2016, 45(S2): 126-131. doi: 10.3788/IRLA201645.S223002
    [15] 杨驰, 胡文怡, 罗敏, 孙莹莹, 周辉.  椭圆高斯足印对星载激光测高仪测距值及其误差的影响 . 红外与激光工程, 2016, 45(7): 717003-0717003(7). doi: 10.3788/IRLA201645.0717003
    [16] 王良训, 周辉, 李子乐, 刘国根, 王虹, 王雅培.  面向星载激光测高仪的陆地目标响应函数仿真 . 红外与激光工程, 2015, 44(11): 3424-3430.
    [17] 周辉, 李松, 王良训, 郑国兴.  噪声对星载激光测高仪测距误差的影响 . 红外与激光工程, 2015, 44(8): 2256-2261.
    [18] 赵婧鑫, 周富强.  小尺寸光斑中心的高精度定位算法 . 红外与激光工程, 2014, 43(8): 2690-2693.
    [19] 马跃, 李松, 翁寅侃, 周辉.  星载激光测高仪大气干项延迟校正 . 红外与激光工程, 2013, 42(4): 909-914.
    [20] 周辉, 李松, 明先顺, 陈舒杭, 陈梦竹, 胡磊.  激光高度计接收脉冲回波信号分析器 . 红外与激光工程, 2012, 41(8): 2042-2047.
  • 加载中
计量
  • 文章访问数:  390
  • HTML全文浏览量:  62
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-28
  • 修回日期:  2015-09-29
  • 刊出日期:  2016-01-25

单次大气散射效应对星载激光测高仪接收脉冲回波的影响

doi: 10.3788/IRLA201645.0106002
    作者简介:

    周辉(1979-),男,副教授,博士,主要从事激光遥感、激光测距和激光合作目标技术等方面的研究。Email:abidingmyself@163.com

基金项目:

测绘地理信息公益性行业专项(201412007,201512016);上海航天科技创新基金(SAST201422); 2014年基础测绘科技计划项目

  • 中图分类号: TN249

摘要: 大气散射效应是影响星载激光测高仪接收脉冲回波的重要因素。根据星载激光测高仪接收脉冲回波信号与大气响应函数之间的关系式,在忽略大气多次散射效应的条件下,通过分析散射激光束的几何轨迹和散射概率,推导出单次大气散射激光脉冲和接收脉冲回波的特征参数的数学解析式。以地球科学激光测高仪系统参数为输入,采用数值仿真分析的方法,模拟了大气散射介质分布、激光指向角和目标倾斜角对接收脉冲回波信号特征参数的影响。结果表明,若散射介质的高度和粒子半径范围分别为0.2~6 km和0~120 m,则其对接收脉冲回波的能量、重心和均方根脉宽的影响最大值分别超过15%、250 cm和800 cm。随着激光指向角或目标倾斜角的增加,接收脉冲回波的能量基本不产生影响,但是其重心和均方根脉宽近似呈线性增加趋势。同时,采用高斯拟合方法可以减小大气散射效应对接收脉冲回波的影响。所得结论对于接收脉冲回波的数据处理与分析以及激光测距精度的评估具有一定的指导意义。

English Abstract

参考文献 (10)

目录

    /

    返回文章
    返回