留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

THz超材料的明暗模式耦合效应

袁宇阳 张慧芳 张学迁 谷建强 胡放荣 熊显名 张文涛 韩家广

袁宇阳, 张慧芳, 张学迁, 谷建强, 胡放荣, 熊显名, 张文涛, 韩家广. THz超材料的明暗模式耦合效应[J]. 红外与激光工程, 2018, 47(1): 121002-0121002(11). doi: 10.3788/IRLA201847.0121002
引用本文: 袁宇阳, 张慧芳, 张学迁, 谷建强, 胡放荣, 熊显名, 张文涛, 韩家广. THz超材料的明暗模式耦合效应[J]. 红外与激光工程, 2018, 47(1): 121002-0121002(11). doi: 10.3788/IRLA201847.0121002
Yuan Yuyang, Zhang Huifang, Zhang Xueqian, Gu Jianqiang, Hu Fangrong, Xiong Xianming, Zhang Wentao, Han Jiaguang. Coupling effect of bright and dark modes in THz metamaterials[J]. Infrared and Laser Engineering, 2018, 47(1): 121002-0121002(11). doi: 10.3788/IRLA201847.0121002
Citation: Yuan Yuyang, Zhang Huifang, Zhang Xueqian, Gu Jianqiang, Hu Fangrong, Xiong Xianming, Zhang Wentao, Han Jiaguang. Coupling effect of bright and dark modes in THz metamaterials[J]. Infrared and Laser Engineering, 2018, 47(1): 121002-0121002(11). doi: 10.3788/IRLA201847.0121002

THz超材料的明暗模式耦合效应

doi: 10.3788/IRLA201847.0121002
基金项目: 

国家自然科学基金(61565004);桂林市科学研究与技术开发课题(20140127-1,20150133-3)

详细信息
    作者简介:

    袁宇阳(1990-),女,硕士,主要从事THz波导天线和超材料方面的研究。Email:yuangchikane@126.com

  • 中图分类号: O433

Coupling effect of bright and dark modes in THz metamaterials

  • 摘要: 随着人工超材料对电磁诱导透明(EIT)现象的成功模拟,超材料明暗模间的耦合机制引起了广泛关注。回顾了近年来在太赫兹(THz)波段基于人工超材料的明暗模耦合效应的相关研究进展,包括平面结构EIT效应,立体结构EIT效应,明暗模垂直耦合电磁诱导吸收(EIA)效应,以及表面波非对称激发。组成超材料的单元结构内部的模式耦合机制对超材料的远场近场响应具有决定性的作用,其不同的耦合机制在光开关、慢光器件、光传感器、片上系统等的设计方面有重大的潜在应用价值。
  • [1] Pendry J B. Negative refraction makes a perfect lens[J]. Phys Rev Lett, 2000, 85(18):3966-3969.
    [2] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514):77-79.
    [3] Zhang S, Fan W, Panoiu N C, et al. Experimental demonstration of near-infrared negative-index metamaterials[J]. Phys Rev Lett, 2005, 95(13):137404.
    [4] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721):534-537.
    [5] Zhang S, Xiong Y, Bartal G, et al. Magnetized plasma for reconfigurable subdiffraction imaging[J]. Phys Rev Lett, 2011, 106(24):243901.
    [6] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781):1780-1782.
    [7] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801):977-980.
    [8] Li J, Pendry J B. Hiding under the carpet:a new strategy for cloaking[J]. Phys Rev Lett, 2008, 101(20):203901.
    [9] Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976):337-339.
    [10] Tao H, Landy N I, Bingham C M, et al. A metamaterial absorber for the terahertz regime:design, fabrication and characterization[J]. Opt Express, 2008, 16(10):7181-7188.
    [11] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Lett, 2010, 10(7):2342-2348.
    [12] Aydin K, Ferry V E, Briggs R M, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nat Commun, 2011, 2:517.
    [13] Feng Q, Pu M, Hu C, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption[J]. Opt Lett, 2012, 37(11):2133-2135.
    [14] Argyropoulos C, Le K Q, Mattiucci N, et al. Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces[J]. Phys Rev B, 2013, 87(20):205112.
    [15] Kang M, Liu F, Li T F, et al. Polarization-independent coherent perfect absorption by a dipole-like metasurface[J]. Opt Lett, 2013, 38(16):3086-3088.
    [16] Yue W, Wang Z, Yang Y, et al. High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing[J]. Plasmonics, 2016, 11(6):1557-1563.
    [17] Hu F, Xu N, Wang W, et al. A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array[J]. J Micromech Microeng, 2016, 26(2):025006.
    [18] Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials[J]. Phys Rev Lett, 2008, 101(4):047401.
    [19] Papasimakis N, Fedotov V A, Zheludev N I, et al. Metamaterial analog of electromagnetically induced transparency[J]. Phys Rev Lett, 2008, 101(25):253903.
    [20] Tassin P, Zhang L, Koschny T, et al. Low-loss metamaterials based on classical electromagnetically induced transparency[J]. Phys Rev Lett, 2009, 102(5):053901.
    [21] Liu N, Langguth L, Weiss T, et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit[J]. Nat Mater, 2009, 8(9):758-762.
    [22] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337.
    [23] Aieta F, Genevet P, Yu N, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities[J]. Nano Lett, 2012, 12(3):1702-1706.
    [24] Zhang X, Tian Z, Yue W, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J]. Adv Mater, 2013, 25(33):4567-4572.
    [25] Liu L, Zhang X, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Adv Mater, 2014, 26(29):5031-5036.
    [26] Radko I P, Volkov V S, Beermann J. et al. Plasmonic metasurfaces for waveguiding and field enhancement[J]. Laser Photon Rev, 2009, 3(6):575-590.
    [27] Zhao C, Zhang J. Plasmonic demultiplexer and guiding[J]. ACS Nano, 2010, 4(11):6433-6438.
    [28] Tanemura T, Balram K C, Ly-Gagnon D S, et al. Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler[J]. Nano Lett, 2011, 11(7):2693-2698.
    [29] Huang L, Chen X, Bai B, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light:Science Application, 2013, 2(3):e70.
    [30] Zhao C, Zhang J, Liu Y. Light manipulation with encoded plasmonic nanostructures[J]. EPJ Appl Metamat, 2014, 1:6-12.
    [31] Wintz D, Genevet P, Ambrosio A, et al. Holographic metalens for switchable focusing of surface plasmons[J]. Nano Lett, 2015, 15(5):3585-3589.
    [32] Liu J, Gao Y, Ran L, et al. Focusing surface plasmon and constructing central symmetry of focal field with linearly polarized light[J]. Appl Phys Lett, 2015, 106(1):013116.
    [33] Zou C, Withayachumnankul W, Shadrivov I V, et al. Directional excitation of surface plasmons by dielectric resonators[J]. Phys Rev B, 2015, 91(8):085433.
    [34] Zhang X, Xu Y, Yue W, et al. Anomalous surface wave launching by handedness phase control[J]. Adv Mater, 2015, 27(44):7123-7129.
    [35] Xu Q, Zhang X, Xu Y, et al. Plasmonic metalens based on coupled resonators for focusing of surface plasmons[J]. Sci Rep, 2016, 6:37861.
    [36] Zhou J, Koschny T, Soukoulis C M. Magnetic and electric excitations in split ring resonators[J]. Opt Express, 2007, 15(26):17881-17890.
    [37] Singh R, Rockstuhl C, Lederer F, et al. The impact of nearest neighbor interaction on the resonances in terahertz metamaterials[J]. Appl Phys Lett, 2009, 94(2):021116.
    [38] Chiam S Y, Singh R, Zhang W, et al. Controlling metamaterial resonances via dielectric and aspect ratio effects[J]. Appl Phys Lett, 2010, 97(19):191906.
    [39] Wu P C, Hsu W L, Chen W T, et al. Plasmon coupling in vertical split-ring resonator metamolecules[J]. Sci Rep, 2015, 5:9726.
    [40] Manjappa M, Srivastava Y K, Singh R. Lattice-induced transparency in planar metamaterials[J]. Phys Rev B, 2016, 94(16):161103.
    [41] Chen C Y, Un I W, Tai N H, et al. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance[J]. Opt Express, 2009, 17(17):15372-15380.
    [42] Ma Y, Li Z, Yang Y, et al. Plasmon-induced transparency in twisted Fano terahertz metamaterials[J]. Opt Mater Express, 2011, 1(3):391-399.
    [43] Taubert R, Hentschel M, Kstel J, et al. Classical analog of electromagnetically induced absorption in plasmonics[J]. Nano Lett, 2012, 12(3):1367-1371.
    [44] Verslegers L, Yu Z, Ruan Z, et al. From electromagnetically induced transparency to superscattering with a single structure:a coupled-mode theory for doubly resonant structures[J]. Phys Rev Lett, 2012, 108(8):083902.
    [45] Tassin P, Zhang L, Zhao R, et al. Electromagnetically induced transparency and absorption in metamaterials:the radiating two-oscillator model and its experimental confirmation[J]. Phys Rev Lett, 2012, 109(18):187401.
    [46] Qu K, Agarwal G S. Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems[J]. Phys Rev A, 2013, 87(3):031802.
    [47] Liao Z, Pan B C, Shen X, et al. Multiple Fano resonances in spoof localezed surface plasmons[J]. Opt Express, 2014, 22(13):15710-15717.
    [48] Chen L, Wei Y M, Zang X F, et al. Excitation of dark multipolar plasmonic resonances at terahertz frequencies[J]. Sci Rep, 2016, 6:22027.
    [49] Zhang X, Xu Q, Li Q, et al. Asymmetric excitation of surface plasmons by dark mode coupling[J]. Sci Adv, 2016, 2(2):e1501142.
    [50] Liu X, Gu J, Singh R, et al. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode[J]. Appl Phys Lett, 2012, 100(13):131101.
    [51] Liang D, Zhang H, Gu J, et al. Plasmonic analogue of electromagneticlly induced transparency in stereo metamaterials[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4):1-7.
    [52] Zhang X, Xu N, Qu K, et al. Electromagnetically induced absorption in a three-resonator metasurface system[J]. Sci Rep, 2015, 5:10737.
    [53] Boiler K J, Imamo?lu A, Harris S E. Observation of electromagnetically induced transparency[J]. Phys Rev Lett, 1991, 66(20):2593-2596.
    [54] Gu J, Singh R, Liu X, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nat Commun, 2012, 3:1151.
    [55] Wu P C, Chen W T, Yang K Y, et al. Magnetic plasmon induced transparency in three-dimensional metamolecules[J]. Nanophotonics, 2012, 1(2):131-138.
    [56] Yang Y M, Kravchenko I I, Briggs D, et al. All dielectric metasurface analogue of electromagnetically induced transparency[J]. Nat Commun, 2014, 5:5753.
    [57] Kaelberer T, Fedotov V A, Papasimakis N, et al. Toroidal dipolar response in a metamaterial[J]. Science, 2010, 330(6010):1510-1512.
    [58] Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947):1513-1515.
    [59] Zhang S, Park Y S, Li J, et al. Negative refractive index in chiral metamaterials[J]. Phys Rev Lett, 2009, 102(2):023901.
    [60] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950):824-830.
    [61] Ebbesen T W, Genet C, Bozhevolnyi S I. Surface-plasmon circuitry[J]. Phys Today, 2008, 61(5):44-50.
    [62] Sorger V J, Oulton R F, Ma R M, et al. Toward integrated plasmonic circuits[J]. MRS Bulletin, 2012, 37(8):728-738.
    [63] Fang Y, Sun M. Nanoplasmonic waveguides:towards applications in integrated nanophotonic circuits[J]. Light:Science Application, 2015, 4(6):e294.
    [64] Xu Y, Zhang X, Tian Z, et al. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces[J]. Appl Phys Lett, 2015, 107(2):021105.
  • [1] 孙雨佳, 陈方舟, 李晓志.  纳米金属粒子梯度掺杂的硅基近红外吸收增强结构 . 红外与激光工程, 2024, 53(2): 20230519-1-20230519-8. doi: 10.3788/IRLA20230519
    [2] 姜鑫鹏, 杜特, 马汉斯, 张兆健, 何新, 张振福, 陈欢, 于洋, 黄沙, 杨俊波.  光学微纳结构红外隐身技术研究进展(特邀) . 红外与激光工程, 2023, 52(6): 20230197-1-20230197-14. doi: 10.3788/IRLA20230197
    [3] 王涵钰, 徐威, 朱志宏, 杨镖.  基于界面反射本征态的外尔超材料偏振特性研究 . 红外与激光工程, 2023, 52(6): 20230233-1-20230233-8. doi: 10.3788/IRLA20230233
    [4] 秦正, 梁中翥, 史晓燕, 杨福明, 刘文军, 侯恩柱, 孟德佳.  中红外-甚长波多模式谐振三波段超材料吸波体(特邀) . 红外与激光工程, 2022, 51(7): 20220224-1-20220224-5. doi: 10.3788/IRLA20220224
    [5] 梁竟程, 陈伟聪, 程强, 金石, 崔铁军.  基于信息超表面的无线通信(特邀) . 红外与激光工程, 2022, 51(1): 20210797-1-20210797-16. doi: 10.3788/IRLA20210797
    [6] 杜佳远, 赵锌宇, 胡新华.  人工微结构薄层红外探测器的研究进展(特邀) . 红外与激光工程, 2021, 50(1): 20211002-1-20211002-8. doi: 10.3788/IRLA20211002
    [7] 许江勇, 周波, 苏安, 蒙成举, 高英俊.  左右手材料光子晶体带隙及表面波局域电场特性 . 红外与激光工程, 2020, 49(9): 20200052-1-20200052-7. doi: 10.3788/IRLA20200052
    [8] 张岩, 李春, 卞博锐, 张文, 蒋玲.  新型太赫兹波束分离器的设计 . 红外与激光工程, 2020, 49(5): 20190290-20190290-7. doi: 10.3788/IRLA20190290
    [9] 岳嵩, 王然, 侯茂菁, 黄刚, 张紫辰.  利用高阶表面等离子体共振实现窄带完美吸收 . 红外与激光工程, 2020, 49(5): 20190489-20190489-7. doi: 10.3788/IRLA20190489
    [10] 梁丽, 文龙, 蒋春萍, 陈沁.  人工微结构太赫兹传感器的研究进展 . 红外与激光工程, 2019, 48(2): 203001-0203001(17). doi: 10.3788/IRLA201948.0203001
    [11] 郑伟, 范飞, 陈猛, 白晋军, 常胜江.  基于太赫兹超材料的微流体折射率传感器 . 红外与激光工程, 2017, 46(4): 420003-0420003(6). doi: 10.3788/IRLA201746.0420003
    [12] 张学迁, 张慧芳, 田震, 谷建强, 欧阳春梅, 路鑫超, 韩家广, 张伟力.  利用介质超材料控制太赫兹波的振幅和相位 . 红外与激光工程, 2016, 45(4): 425004-0425004(6). doi: 10.3788/IRLA201645.0425004
    [13] 王花, 孙晓红, 王真, 齐永乐, 王毅乐.  太赫兹波超材料吸波体的特性分析 . 红外与激光工程, 2016, 45(12): 1225003-1225003(5). doi: 10.3788/IRLA201645.1225003
    [14] 李依涵, 张米乐, 崔海林, 何敬锁, 张存林.  金属开口谐振环结构的太赫兹波吸收特性 . 红外与激光工程, 2016, 45(12): 1225002-1225002(6). doi: 10.3788/IRLA201645.1225002
    [15] 王玥, 何雨霖, 张丽颖, 王暄, 童一静, 吴群.  碳纳米管束/介质界面表面波激发与传输特性 . 红外与激光工程, 2014, 43(11): 3843-3848.
    [16] 曹小龙, 姚建铨, 车永莉.  应用于THz波的非对称双开口环传输特性研究 . 红外与激光工程, 2014, 43(11): 3854-3858.
    [17] 弓巧侠, 刘晓旻, 段智勇, 师小强, 马凤英, 梁二军.  十字架型超材料吸波特性及机理研究 . 红外与激光工程, 2013, 42(6): 1528-1532.
    [18] 罗俊, 公金辉, 张新宇, 季安, 谢长生, 张天序.  基于超材料的连续太赫兹波透射特性研究 . 红外与激光工程, 2013, 42(7): 1743-1747.
    [19] 李乾坤, 李德华, 周薇, 马建军, 鞠智鹏, 屈操.  单缝双环结构超材料太赫兹波调制器 . 红外与激光工程, 2013, 42(6): 1553-1556.
    [20] 李文胜, 黄海铭, 付艳华, 张琴, 是度芳.  含单负材料对称型一维光子晶体隧穿模的特性 . 红外与激光工程, 2012, 41(1): 69-72.
  • 加载中
计量
  • 文章访问数:  563
  • HTML全文浏览量:  83
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-05
  • 修回日期:  2017-08-03
  • 刊出日期:  2018-01-25

THz超材料的明暗模式耦合效应

doi: 10.3788/IRLA201847.0121002
    作者简介:

    袁宇阳(1990-),女,硕士,主要从事THz波导天线和超材料方面的研究。Email:yuangchikane@126.com

基金项目:

国家自然科学基金(61565004);桂林市科学研究与技术开发课题(20140127-1,20150133-3)

  • 中图分类号: O433

摘要: 随着人工超材料对电磁诱导透明(EIT)现象的成功模拟,超材料明暗模间的耦合机制引起了广泛关注。回顾了近年来在太赫兹(THz)波段基于人工超材料的明暗模耦合效应的相关研究进展,包括平面结构EIT效应,立体结构EIT效应,明暗模垂直耦合电磁诱导吸收(EIA)效应,以及表面波非对称激发。组成超材料的单元结构内部的模式耦合机制对超材料的远场近场响应具有决定性的作用,其不同的耦合机制在光开关、慢光器件、光传感器、片上系统等的设计方面有重大的潜在应用价值。

English Abstract

参考文献 (64)

目录

    /

    返回文章
    返回