留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天基大气环境观测激光雷达技术和应用发展研究

郑永超 王玉诏 岳春宇

郑永超, 王玉诏, 岳春宇. 天基大气环境观测激光雷达技术和应用发展研究[J]. 红外与激光工程, 2018, 47(3): 302002-0302002(14). doi: 10.3788/IRLA201847.0302002
引用本文: 郑永超, 王玉诏, 岳春宇. 天基大气环境观测激光雷达技术和应用发展研究[J]. 红外与激光工程, 2018, 47(3): 302002-0302002(14). doi: 10.3788/IRLA201847.0302002
Zheng Yongchao, Wang Yuzhao, Yue Chunyu. Technical and application development study of space-borne atmospheric environment observation lidar[J]. Infrared and Laser Engineering, 2018, 47(3): 302002-0302002(14). doi: 10.3788/IRLA201847.0302002
Citation: Zheng Yongchao, Wang Yuzhao, Yue Chunyu. Technical and application development study of space-borne atmospheric environment observation lidar[J]. Infrared and Laser Engineering, 2018, 47(3): 302002-0302002(14). doi: 10.3788/IRLA201847.0302002

天基大气环境观测激光雷达技术和应用发展研究

doi: 10.3788/IRLA201847.0302002
基金项目: 

国家自然科学基金(41401411,41401410);国家重点研发计划地球观测与导航重点专项基金(2016YFB0500802)

详细信息
    作者简介:

    郑永超(1963-),男,研究员,博士生导师,主要从事光电系统、激光遥感总体技术方面的研究。Email:laser0371@163.com

  • 中图分类号: P236

Technical and application development study of space-borne atmospheric environment observation lidar

  • 摘要: 根据大气观测目标,从云-气溶胶、风场和大气分子三个主要方向对天基激光雷达在大气环境观测领域的应用、配置和相关技术发展进行了分析,研究了天基大气环境探测激光雷达的探测机制、技术体制、系统配置、应用现状、适用范围、约束条件等,提出天基大气环境观测激光雷达载荷研制应根据任务应用需求、科学和工程目标、各技术体制特点和器件及处理技术特点合理制定指标体系,充分发挥激光技术长项,与其他载荷手段优化配置,技术研究方面应扬长补短短,并在此基础上展望了天基大气环境观测技术和应用的发展趋势、研究热点及其应用拓展。
  • [1] Liu Bingyi, Zhuang Quanfeng, Qin Shengguang, et al. Aerosol classification method based on high spectral resolution lidar[J]. Infrared and Laser Engineering, 2017, 46(4):0411001. (in Chinese)刘秉义, 庄全风, 秦胜光, 等. 基于高光谱分辨率激光雷达的气溶胶分类方法研究[J]. 红外与激光工程, 2017, 46(4):0411001.
    [2] Huang Jian, Hu Shunxing, Cao Kaifa, et al. Remote sensing system for vertical profiles of atmospheric CO2[J]. Infrared and Laser Engineering, 2016, 45(4):0417004. (in Chinese)黄见, 胡顺星, 曹开法, 等. 可用于探测大气CO2垂直廓线的无线传感系统[J]. 红外与激光工程, 2016, 45(4):0417004.
    [3] Hui Wen, Huang Fuxiang, Guo Qiang. Combined application of lightning detection data from satellite and ground-based observations[J]. Optics and Precision Engineering, 2018, 26(1):218-229. (in Chinese)惠雯, 黄富祥, 郭强. 卫星与地基闪电探测资料在闪电活动研究中的综合应用[J]. 光学精密工程, 2018, 26(1):218-229.
    [4] Fu Chuanbo, Dan Li, Tang Jiaxiang, et al. Temporal and spatial characteristics of haze days and their relations with climatic factor during 1960~2013 over South China[J]. China Environmental Science, 2016, 36(5):1313-1322. (in Chinese)符传博, 丹利, 唐家翔, 等. 1960~2013年华南地区霾污染的时空变化及其与关键气候因子的关系[J]. 中国环境科学, 2016, 36(5):1313-1322.
    [5] Liu Dong, Liu Qun, Bai Jian, et al. Data processing algorithms of the spac-borne lidar CALIOP:a review[J]. Infrared and Laser Engineering, 2017, 46(12):1202001. (in Chinese)刘东, 刘群, 白剑, 等. 星载激光雷达CALIOP数据处理算法概述[J]. 红外与激光工程, 2017, 46(12):1202001.
    [6] Wang Guizhi, Gu Saiju, Chen Jibo. Assessment of the indirect economic loss caused by heavy haze in Beijing based on input-output model[J]. Environmental Engineering, 2016, 34(1):17-19. (in Chinese)王桂芝,顾赛菊, 陈继波.基于投入产出模型的北京市雾霾间接经济损失评估[J]. 环境工程, 2016, 34(1):17-19.
    [7] Ren Fumin, Gao Hui, Liu Lvliu, et al. Research progresses on extreme weather and climate events and their operational applications in climate monitoring and prediction[J]. Meteorological Monthly, 2014, 40(7):860-874. (in Chinese)任福民, 高辉, 刘绿柳, 等. 极端天气气候事件监测与预测研究进展及其应用综述[J]. 气象, 2014, 40(7):860-874.
    [8] Li Qingquan, Sun Chenghu, Yuan Yuan, et al. Major advances of China climate monitoring and diagnosis operation in recent 20 years[J]. Journal of Applied Meteorological Science, 2013, 24(6):666-676. (in Chinese)李清泉, 孙丞虎, 袁媛, 等. 近20年我国气候监测诊断业务技术的主要进展[J]. 应用气象学报, 2013, 24(6):666-676.
    [9] Xiao Ziniu. Advances of the short range climate monitoring and prediction in China[J]. Meteorological Monthly, 2010, 36(7):21-25. (in Chinese)肖子牛. 我国短期气候监测预测业务进展[J].气象, 2010, 36(7):21-25.
    [10] Claus Weitkamp. Lidar Range-Resolved Optical Remote Sensing of the Atmosphere[M]. New York:Springer, 2005:1-18.
    [11] Takashi Fujii, Tetsuo Fukuchi. Laser Remote Sensing[M]. Boca Raton:CRC Press, 2005:1-36.
    [12] Winker D M, Couch R H, Mccormick M P. An overview of LITE:NASA's lidar in-space technology experiment[J]. Proceedings of the IEEE, 1996, 84(2):164-180.
    [13] Ansmann A, Mller D, Wandinger U, et al. Lidar profiling of aerosol optical and microphysical properties from space:overview, review, and outlook[C]//First International Conference on Remote Sensing and Geoinformation of the Environment, Proc of SPIE, 2013, 8795:879502.
    [14] Guennadii G Matvienko. Modern concept of a spaceborne lidar[C]//Sixth International Symposium on Atmospheric and Ocean Optics, SPIE, 2001, 3983:250-259.
    [15] Schutz B E, Zwally H J, Shuman C A. Overview of the ICESat Mission[J]. Geophysical Research Letters, 2005, 32:L21S01.
    [16] Paoli F, Blouvac J. CALIPSO:a small satellite in low earth orbit for the study of the clouds and aerosols[C]//Proceedings of the IAC, 2005:IAC-05-B5.2.02.
    [17] Bzy J -L, Leibrandt W, Hlire A, et al. System, spacecraft, and instrument concepts for the ESA Earth Explorer EarthCARE Mission[C]//Proceedings of 11th SPIE International Symposium on Remote Sensing, 2005, 5978:19-22.
    [18] David Starr. NASA's Aerosol-Cloud-Ecosystems (ACE) mission[C]//Hyperspectral Imaging Sounding of the Environment, 2011.
    [19] Ti Chuang, Patrick Burns, Walters E B, et al. Space-borne, multi-wavelength solid-state lasers for NASA's cloud aerosol transport system for international space station[C]//SPIE, 2013, 8599:85990N-1-14.
    [20] Sun Qiang, Fan Xuehua, Xia Xiang'ao. Observation and analysis of aerosol vertical distribution characteristics in north china plain[J]. Meteorological and Environmental Sciences, 2016, 39(1):73-79. (in Chinese)孙强, 范学花, 夏祥鳌. 华北地区气溶胶垂直分布特征的观测与分析[J]. 气象与环境科学, 2016, 39(1):73-79.
    [21] Wang Chaojie, Wang Bo, Guo Huinan, et al. Online measurement of atmospheric density based on space vehicle platform[J]. Optics and Precision Engineering, 2017, 25(1):15-20. (in Chinese)王超杰, 王博, 郭惠楠, 等. 空间飞行器平台大气密度的在轨测量[J]. 光学精密工程, 2017, 25(1):15-20.
    [22] Lu Xianyang, Li Xuebin, Qin Wubin, et al. Retrieval of horizontal distribution of aerosol mass concentration by micro pulse lidar[J]. Optics and Precision Engineering, 2017, 25(7):1697-1704. (in Chinese)鲁先洋, 李学彬, 秦武斌, 等. 微脉冲激光雷达反演气溶胶的水平分布[J]. 光学精密工程, 2017, 25(7):1697-1704.
    [23] Jiang Xuegong, Chen Shoujun, Yun Jingbo. Analysis on characteristics of vertical structure of sand and dust during dust storm process based on CALIPSO data[J]. Meteorological Monthly, 2014, 40(3):269-279. (in Chinese)姜学恭, 陈受钧, 云静波. 基于CALIPSO资料的沙尘暴过程沙尘垂直结构特征分析[J]. 气象, 2014, 40(3):269-279.
    [24] Winker D, Vaughan M, Hunt B. The CALIPSO mission and initial results from CLIOP[C]//Lidar Remote Sensing for Environmental MonitoringVⅡ, 2006, 6409:640902.
    [25] Rodier S, Zhai P, Josset D, et al. CALIPSO lidar measurments for ocean sub-surface studies[C]//34th International Symposium on Remote Sensing of Environment, 2011.
    [26] James H Churnside, Brandi J McCarty, Lu Xiaomei.Subsurface ocean signals from an orbiting polarization lidar[J]. Remote Sensing, 2013, 5(7):3457-3475.
    [27] Behrenfeld M J, Hu Yongxiang, Hostetler C A, et al. Space-borne lidar measurements of global ocean carbon stocks[J]. Geophysical Research Letters, 2013, 40(16):4355-4630.
    [28] Kelly M Brunt, Sinad L Farrell, Vanessa M Escobar. ICESat-2:A next generation laser altimeter for space-borne determination of surface elevation[C]//93rd American Meteorological Society Annual Meeting, 2013.
    [29] David J Harding. NASA's Lidar measurements of the Earth's surface from space[C]//Proceedings of IGARSS (International Geoscience and Remote Sensing Symposium), 2012.
    [30] Charon Birkett, Markus T, Neumann T. The ICESat-2 Mission-laser altimetry of ice, clouds and land elevation and also ocean, coastal, and continental waters[C]//OSTM SWT (Science Working Team), 2011.
    [31] Zeromskis E, Wandinger U, Althausen D, et al. Coherent Doppler lidar for studies of transport and mixing processes in the lower atmosphere[C]//22nd International Lidar Conference, 2004, 561:123-125.
    [32] Kameyama S, Ando T, Asaka K, et al. Compact all fiber pulsed coherent doppler lidar system for wind sensing[J]. Appl Opt, 2007, 46(11):1953-1962.
    [33] World Meteorological Organization. Preliminary statement of guidance regarding how well satellite capabilities meet WMO user requirements in several application areas[R]. WMO/TD, 1998.
    [34] Kin P Chan, Dennis K Killinger. Short-pules coherent Doppler Nd:YAG lidar[J]. Optical Engineerring, 1991, 14(15):776-785.
    [35] Beranek R G, Bilbro J W, Fitzjarrald D E, et al. Laser Atmospheric Wind Sounder (LAWS)[C]//Proc SPIE, 1989, 1062:doi 10.1117/12.951882.
    [36] Baker W E, Emmitt G D, Robertson F, et al. Lidar-measured winds from space:a key component for weather and climate prediction[J]. Bull American Meteorological Society, 1995, 76(6):869-888.
    [37] National Research Council (NRC). Earth Science and Applications from Space:National Imperatives for the Next Decade and Beyond[M]. Washington DC:The National Academic Press, 2007.
    [38] Huffaker R M. Feasibility study of satellite-borne lidar global wind monitoring system[R]. NOAA Tech Memo ERL WPL-37, 1978.
    [39] Jerome Caron, Yannig Durand. Operating wavelengths optimization for a space borne lidar measuring atmospheric CO2[J]. Applied Optics, 2009, 48:5413-5422.
    [40] Caron J, Durand Y, Bezy J L, et al. Performance modeling for A-SCOPE, a space borne lidar measuring atmospheric CO2[C]//SPIE, 2009, 7479:74790E.
    [41] Ehret G, Kiemle C, Wirth M, et al. Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar:a sensitivity analysis[J]. Applied Physics B, 2008, 90:593-608.
    [42] University of Michigan in Ann Arbor, Michigan, USA. Active Sensing of CO2 Emissions over Night 5,Days,and Sea 50 ns (ASCENDS) Mission[R]. NASA Science Definition and Planning Workshop Report, 2008:78.
    [43] James B Abshire, Haris Riris, Graham R Allan. A lidar approach to measure CO2 concentrations from space for the ASCENDS mission[C]//SPIE, 2010, 7832, 78320D:1-13.
  • [1] 张欣雨, 蒋莉莉, 宋冉, 张治军, 李冰冰, 苏娟, 吴锜.  632 nm FMCW激光雷达在水汽环境中测速与测距的应用 . 红外与激光工程, 2024, 53(3): 20240093-1-20240093-4. doi: 10.3788/IRLA20240093
    [2] 杨彬, 莫祖斯, 刘海姣, 卜令兵.  大气探测激光雷达突变信号处理方法研究(特邀) . 红外与激光工程, 2022, 51(1): 20211117-1-20211117-9. doi: 10.3788/IRLA20211117
    [3] 徐冰清, 韩燕, 徐文静, 郑俊, 孙东松.  小视场大气温湿度探测的拉曼激光雷达的设计与仿真 . 红外与激光工程, 2021, 50(9): 20200410-1-20200410-9. doi: 10.3788/IRLA20200410
    [4] 黄宜帆, 贺岩, 胡善江, 侯春鹤, 朱小磊, 李凯鹏, 刘芳华, 陈勇强, 郭守川.  海洋激光雷达图像处理提取海水深度的方法 . 红外与激光工程, 2021, 50(6): 20211034-1-20211034-8. doi: 10.3788/IRLA20211034
    [5] 狄慧鸽, 华灯鑫.  底层大气探测激光雷达国内研究现状与进展(特邀) . 红外与激光工程, 2021, 50(3): 20210032-1-20210032-10. doi: 10.3788/IRLA20210032
    [6] 李晓龙, 赵朝方.  激光雷达探测海洋物质垂直分布的应用及发展趋势 . 红外与激光工程, 2020, 49(S2): 20200381-20200381. doi: 10.3788/IRLA20200381
    [7] 赵曰峰, 高静, 潘杰, 王旭, 张玉容, 李辉, 王艳琪, 段孟君, 岳伟伟, 蔡阳健, 许化强, 王晶晶.  基于激光雷达的区域大气颗粒物探测 . 红外与激光工程, 2020, 49(S2): 20200324-20200324. doi: 10.3788/IRLA20200324
    [8] 胡善江, 贺岩, 陶邦一, 俞家勇, 陈卫标.  基于深度学习的机载激光海洋测深海陆波形分类 . 红外与激光工程, 2019, 48(11): 1113004-1113004(8). doi: 10.3788/IRLA201948.1113004
    [9] 滕曼, 庄鹏, 张站业, 李路, 姚雅伟.  大气气溶胶污染监测中应用的新型全天时户外型拉曼-米散射激光雷达系统 . 红外与激光工程, 2019, 48(7): 706001-0706001(7). doi: 10.3788/IRLA201948.0706001
    [10] 华灯鑫, 王骏.  海洋激光遥感技术研究进展(特邀) . 红外与激光工程, 2018, 47(9): 903003-0903003(7). doi: 10.3788/IRLA201847.0903003
    [11] 杜玉红, 王鹏, 史屹君, 王璐瑶, 赵地.  环境特征自适应激光雷达数据分割方法 . 红外与激光工程, 2018, 47(8): 830001-0830001(8). doi: 10.3788/IRLA201847.0830001
    [12] 王强, 郝利丽, 唐红霞, 李贤丽, 牟海维, 韩连福, 赵远.  实际环境对量子激光雷达性能的影响 . 红外与激光工程, 2018, 47(S1): 29-35. doi: 10.3788/IRLA201847.S106006
    [13] 周树道, 马忠良, 王敏, 彭舒龄.  采用光束扫描的透射仪测量光路自动准直系统 . 红外与激光工程, 2017, 46(10): 1017001-1017001(7). doi: 10.3788/IRLA201769.1017001
    [14] 尚震, 谢晨波, 王邦新, 谭敏, 钟志庆, 王珍珠, 刘东, 王英俭.  纯转动拉曼激光雷达探测北京地区近地面大气温度 . 红外与激光工程, 2017, 46(10): 1030001-1030001(8). doi: 10.3788/IRLA201764.1030001
    [15] 邓潘, 张天舒, 陈卫, 刘洋.  合肥上空中层大气密度和温度的激光雷达探测 . 红外与激光工程, 2017, 46(7): 730003-0730003(6). doi: 10.3788/IRLA201746.0730003
    [16] 邓潘, 张天舒, 刘建国, 刘洋, 董云升, 范广强.  532 nm和355 nm瑞利激光雷达观测中层大气的数据对比分析 . 红外与激光工程, 2016, 45(S2): 19-25. doi: 10.3788/IRLA201645.S230001
    [17] 邓潘, 张天舒, 陈卫, 刘建国, 刘洋.  大气探测激光雷达噪声比例因子及信噪比的估算 . 红外与激光工程, 2016, 45(S1): 81-86. doi: 10.3788/IRLA201645.S130003
    [18] 周颖捷, 周安然, 孙东松, 强希文, 封双连.  差分像移大气湍流廓线激光雷达的研制 . 红外与激光工程, 2016, 45(11): 1130001-1130001(5). doi: 10.3788/IRLA201645.1130001
    [19] 闫力松, 王孝坤, 罗霄, 曾雪锋, 郑立功, 张学军.  基于非理想标准镜的子孔径拼接干涉检测技术研究 . 红外与激光工程, 2014, 43(1): 178-183.
    [20] 马晓珊, 孟新, 杨震, 彭晓东, 谢文明.  天基光学遥感成像仿真中大气影响分析与模拟 . 红外与激光工程, 2014, 43(1): 226-231.
  • 加载中
计量
  • 文章访问数:  479
  • HTML全文浏览量:  69
  • PDF下载量:  233
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-05
  • 修回日期:  2017-11-03
  • 刊出日期:  2018-03-25

天基大气环境观测激光雷达技术和应用发展研究

doi: 10.3788/IRLA201847.0302002
    作者简介:

    郑永超(1963-),男,研究员,博士生导师,主要从事光电系统、激光遥感总体技术方面的研究。Email:laser0371@163.com

基金项目:

国家自然科学基金(41401411,41401410);国家重点研发计划地球观测与导航重点专项基金(2016YFB0500802)

  • 中图分类号: P236

摘要: 根据大气观测目标,从云-气溶胶、风场和大气分子三个主要方向对天基激光雷达在大气环境观测领域的应用、配置和相关技术发展进行了分析,研究了天基大气环境探测激光雷达的探测机制、技术体制、系统配置、应用现状、适用范围、约束条件等,提出天基大气环境观测激光雷达载荷研制应根据任务应用需求、科学和工程目标、各技术体制特点和器件及处理技术特点合理制定指标体系,充分发挥激光技术长项,与其他载荷手段优化配置,技术研究方面应扬长补短短,并在此基础上展望了天基大气环境观测技术和应用的发展趋势、研究热点及其应用拓展。

English Abstract

参考文献 (43)

目录

    /

    返回文章
    返回