留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于计算技术的超快光纤激光研究进展与展望(特邀)

周朴 粟荣涛 黄良金 李俊

周朴, 粟荣涛, 黄良金, 李俊. 基于计算技术的超快光纤激光研究进展与展望(特邀)[J]. 红外与激光工程, 2018, 47(8): 803001-0803001(8). doi: 10.3788/IRLA201847.0803001
引用本文: 周朴, 粟荣涛, 黄良金, 李俊. 基于计算技术的超快光纤激光研究进展与展望(特邀)[J]. 红外与激光工程, 2018, 47(8): 803001-0803001(8). doi: 10.3788/IRLA201847.0803001
Zhou Pu, Su Rongtao, Huang Liangjin, Li Jun. Research progress and future perspective on ultrafast fiber laser enabled by computing technique (invited)[J]. Infrared and Laser Engineering, 2018, 47(8): 803001-0803001(8). doi: 10.3788/IRLA201847.0803001
Citation: Zhou Pu, Su Rongtao, Huang Liangjin, Li Jun. Research progress and future perspective on ultrafast fiber laser enabled by computing technique (invited)[J]. Infrared and Laser Engineering, 2018, 47(8): 803001-0803001(8). doi: 10.3788/IRLA201847.0803001

基于计算技术的超快光纤激光研究进展与展望(特邀)

doi: 10.3788/IRLA201847.0803001
基金项目: 

中国科协青年人才托举工程;湖南省科协中青年学者培养计划

详细信息
    作者简介:

    周朴(1984-),男,研究员,博士,主要从事光纤激光与光束合成技术等方面的研究。Email:zhoupu203@163.com

  • 中图分类号: O438

Research progress and future perspective on ultrafast fiber laser enabled by computing technique (invited)

  • 摘要: 计算技术的引入给超快光纤激光带来了全新的研究方法和实际效果。文中简要总结计算技术应用于脉冲光纤激光的研究历程,梳理发展脉络,全面展示了计算技术促进超快光纤激光研究发展的使能特性。计算技术与超快光纤研究的进一步深度融合,有可能开辟新的研究与应用领域。
  • [1] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nat Photonics, 2013, 7(11):868-874.
    [2] Liu M, Luo A, Yan Y, et al. Successive soliton explosions in an ultrafast fiber laser[J]. Opt Lett, 2016, 41(6):1181-1184.
    [3] Mou C, Sergeyev S, Rozhin A, et al. All-fiber polarization locked vector soliton laser using carbon nanotubes[J]. Opt Lett, 2011, 36(19):3831-3833.
    [4] Liu Y, Li W, Luo D, et al. Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier[J]. Opt Express, 2016, 24(10):10939-10945.
    [5] Shah L, Fermann M E, Dawson J W, et al. Micromachining with a 50 W, 50J, sub-picosecond fiber laser system[J]. Opt Express, 2006, 14(25):12546-12551.
    [6] Lu H K O, Elahi P, Aalan A, et al. High-repetition-rate ultrafast fiber lasers for material processing[J]. IEEE J Sel Top Quantum Electron, 2018, 24(3):8800312.
    [7] Limpert J, Roser F, Schimpf D N, et al. High repetition rate gigawatt peak power fiber laser systems:challenges, design, and experiment[J]. IEEE J Sel Top Quantum Electron, 2009, 15(1):8800312.
    [8] Frantz L M, Nodvik J S. Theory of pulse propagation in a laser amplifier[J]. J Appl Phys, 1963, 34(8):2346-2349.
    [9] Wang Y, Po H. Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification[J]. J Lightwave Technol, 2003, 21(10):2262-2270.
    [10] Schimpf D N, Ruchert C, Nodop D, et al. Compensation of pulse-distortion in saturated laser amplifiers[J]. Opt Express, 2008, 16(22):17637-17646.
    [11] Su R, Zhou P, Wang X, et al. Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers[J]. Opt Lett, 2012, 37(4):497-499.
    [12] Su R, Zhou P, Wang X, et al. Active coherent beam combining of a five-element, 800 watt nanosecond fiber amplifier array[J]. Opt Lett, 2012, 37(19):3978-3980.
    [13] Malinowski A, Vu K T, Chen K K, et al. High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping[J]. Opt Express, 2009, 17(23):20927-20937.
    [14] Lin D, Alam S, Chen K, et al. 100W, fully-fiberised ytterbium doped master oscillator power amplifier incorporating adaptive pulse shaping[C]//Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, 2009, CFM4.
    [15] Malinowski A, Gorman P, Codemard C A, et al. High-peak-power, high-energy, high-average-power pulsed fiber laser system with versatile pulse duration and shape[J]. Opt Lett, 2013, 38(22):4686-4689.
    [16] Jiang M, Su R, Zhang P, et al. Arbitrary temporal shape pulsed fiber laser based on SPGD algorithm[J]. Laser Physics Letters, 2018, 15(6):065101.
    [17] Sobon G A K P. Pulsed dual-stage fiber MOPA source operating at 1550 nm with arbitrarily shaped output pulses[J]. Appl Phys B, 2011, 105(4):721-727.
    [18] Li Z, Heidt A M, Teh P S, et al. High-energy diode-seeded nanosecond 2m fiber MOPA systems incorporating active pulse shaping[J]. Opt Lett, 2014, 39(6):1569-1572.
    [19] Shi H A T F. High-power diode-seeded thulium-doped fiber MOPA incorporating active pulse shaping[J]. Appl Phys B, 2016, 122(10):269.
    [20] Zhang H, Tang D Y, Zhao L M, et al. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene[J]. Opt Express, 2009, 17(20):17630-17635.
    [21] Sun Z, Hasan T, Torrisi F, et al. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010, 4(2):803-810.
    [22] Wang X, Zhou P, Wang X, et al. Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation[J]. Opt Express, 2014, 22(5):6147-6153.
    [23] Fermann M E, Andrejco M J, Silberberg Y, et al. Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber[J]. Opt Lett, 1993, 18(11):894-896.
    [24] Yu Y, Teng H, Wang H, et al. Highly-stable mode-locked PM Yb-fiber laser with 10 nJ in 93-fs at 6 MHz using NALM[J]. Opt Express, 2018, 26(8):10428-10434.
    [25] Haus H A. Mode-locking of lasers[J]. IEEE J Sel Top Quantum Electron, 2000, 6(6):1173-1185.
    [26] Baumeister T, Brunton S L, Kutz J N. Deep learning and model predictive control for self-tuning mode-locked lasers[J]. J Opt Soc Am B, 2018, 35(3):617-626.
    [27] Hellwig T A W T. Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation[J]. Appl Phys B, 2010, 101(3):565-570.
    [28] Shen X, Li W, Yan M, et al. Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers[J]. Opt Lett, 2012, 37(16):3426-3428.
    [29] Olivier M, Gagnon M, E M P. Automated mode locking in nonlinear polarization rotation fiber lasers by detection of a discontinuous jump in the polarization state[J]. Opt Express, 2015, 23(5):6738-6746.
    [30] Radnatarov D, Khripunov S, Kobtsev S, et al. Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution[J]. Opt Express, 2013, 21(18):20626-20631.
    [31] Woodward R I, Kelleher E J R. Towards smart lasers:self-optimisation of an ultrafast pulse source using a genetic algorithm[J]. Scientific Reports, 2016, 6:37616.
    [32] Brunton S L, Fu X, Kutz J N. Extremum-seeking control of a mode-locked laser[J]. IEEE J Quantum Electron, 2013, 49(10):852-861.
    [33] Brunton S L, Fu X, Kutz J N. Self-tuning fiber lasers[J]. IEEE J Sel Top Quantum Electron, 2014, 20(5):1101408.
    [34] Andral U, Fodil R S, Amrani F, et al. Fiber laser mode locked through an evolutionary algorithm[J]. Optica, 2015, 2(4):275-278.
    [35] Andral U, Buguet J, Fodil R S, et al. Toward an autosetting mode-locked fiber laser cavity[J]. J Opt Soc Am B, 2016, 33(5):825-833.
    [36] Woodward R I, Kelleher E J. Self-optimizing mode-locked laser using a genetic algorithm[C]//Conference on Lasers and Electro-Optics, 2016, STu3P.6.
    [37] Winters D G, Kirchner M S, Backus S J, et al. Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser[J]. Opt Express, 2017, 25(26):33216-33225.
    [38] Woodward R I, Kelleher E J R. Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers[J]. Opt Lett, 2017, 42(15):2952-2955.
    [39] Burgoyne B, Illeneuve A V. Programmable lasers:design and applications[C]//SPIE, 2010, 7580:758002.
    [40] Thberge F, Daigle J F, Villeneuve A, et al. Tunable mid-infrared generation using synchronized programmable fiber lasers[C]//SPIE, 2012, 8381:83810E.
    [41] Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nat Photonics, 2013, 7(4):258-261.
    [42] Moustaizis S D, Lalousis P, Perrakis K, et al. ICAN:High power neutral beam generation[J]. Eur Phys J Special Topics, 2015, 224(13):2639-2643.
    [43] Liu Z, Zhou P, Xu X, et al. Coherent Beam Combing of High Average Power Fiber Lasers[M]. Beijing:National Defence Industry Press, 2016. (in Chinese)刘泽金, 周朴, 许晓军, 等. 高平均功率光纤激光相干合成[M]. 北京:国防工业出版社, 2016.
    [44] Vorontsov M A, Carhart W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Opt Lett, 1997, 22(12):907-909.
    [45] Zhou P, Ma Y, Wang X, et al. Coherent beam combining of fiber amplifiers based on stimulated annealing algorithm[J]. High Power Laser and Particle Beams, 2010, 22(5):973-977. (in Chinese)周朴, 马阎星, 王小林, 等. 模拟退火算法光纤放大器相干合成[J]. 强激光与粒子束, 2010, 22(5):973-977.
    [46] Jiang M, Su R, Zhang Z, et al. Coherent beam combining of fiber lasers using a CDMA-based single-frequency dithering technique[J]. Appl Opt, 2017, 56(15):4255-4260.
    [47] Jiang M, Su R, Zhang Z, et al. Joint multiple access based efficient coherent beam combining of fiber lasers[J]. Laser Phys, 2018. (Submitted)
    [48] Goodno G D, Weiss S B. Automated co-alignment of coherent fiber laser arrays via active phase-locking[J]. Opt Express, 2012, 20(14):14945-14953.
    [49] Su R, Zhou P, Zhang P, et al. Review on the progress in coherent beam combining of ultra-short fiber lasers[J]. Infrared and Laser Engineering, 2018, 47(1):0103001. (in Chinese)粟荣涛, 周朴, 张鹏飞, 等. 超短脉冲光纤激光相干合成[J]. 红外与激光工程, 2018, 47(1):0103001.
    [50] Yu H L, Zhang Z X, Wang X L, et al. High average power coherent femtosecond pulse combining system based on an all fiber active control method[J]. Laser Phys Lett, 2018, 15(7):075101.
    [51] Jauregui C, Limpert J, Tunnermann A. High-power fibre lasers[J]. Nat Photon, 2013, 7(11):861-867.
    [52] Tao R, Wang X, Zhou P. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications[J]. IEEE J Sel Top Quantum Electron, 2018, 24(3):0903319.
    [53] Pangovski K, Sparkes M, Cockburn A, et al. Control of material transport through pulse shape manipulation-a development toward designer pulses[J]. IEEE J Sel Top Quantum Electron, 2014, 20(5):0901413.
    [54] Tercan H A K T. Improving the laser cutting process design by machine learning techniques[J]. Production Engineering, 2017, 11(2):195-203.
    [55] Zhou P. Intelligent laser:a versatile tool for multidisciplinary education in photonics[C]//International Conference on Education and Training in Optics and Photonics (ETOP), 2017.
  • [1] 周朴, 蒋敏, 吴函烁, 邓宇, 常洪祥, 黄良金, 吴坚, 许将明, 王小林, 冷进勇.  学科交叉视角下的光纤激光:回顾与展望(特邀) . 红外与激光工程, 2023, 52(6): 20230334-1-20230334-16. doi: 10.3788/IRLA20230334
    [2] 焦亚东, 贾志旭, 郭晓慧, 张成昀, 秦伟平, 秦冠仕.  中红外玻璃光纤材料及拉曼激光光源研究进展(特邀) . 红外与激光工程, 2023, 52(5): 20230228-1-20230228-18. doi: 10.3788/IRLA20230228
    [3] 周朴.  我国高功率光纤激光技术学科方向的历程、现状、挑战与建议 . 红外与激光工程, 2023, 52(7): 20230071-1-20230071-9. doi: 10.3788/IRLA20230071
    [4] 陈默, 王建飞, 路阳, 胡晓阳, 陈伟, 孟洲.  超窄线宽布里渊光纤激光器研究进展(特邀) . 红外与激光工程, 2023, 52(6): 20230131-1-20230131-18. doi: 10.3788/IRLA20230131
    [5] 王涛, 李灿, 刘洋, 任博, 唐振强, 常洪祥, 谢戈辉, 郭琨, 吴坚, 许将明, 冷进勇, 马鹏飞, 粟荣涛, 李文雪, 周朴.  基于光纤拉伸器锁相实现两路超快激光相干偏振合成 . 红外与激光工程, 2023, 52(6): 20220869-1-20220869-8. doi: 10.3788/IRLA20220869
    [6] 张万儒, 粟荣涛, 李灿, 张嵩, 姜曼, 马鹏飞, 马阎星, 吴坚, 周朴.  窄线宽光纤激光振荡器研究进展(特邀) . 红外与激光工程, 2022, 51(6): 20210879-1-20210879-26. doi: 10.3788/IRLA20210879
    [7] 程鑫, 姜华卫, 冯衍.  高功率单频掺铒光纤激光技术研究进展(特邀) . 红外与激光工程, 2022, 51(6): 20220127-1-20220127-12. doi: 10.3788/IRLA20220127
    [8] 李灿, 周朴, 马鹏飞, 姜曼, 陶悦, 刘流.  单频光纤激光技术的研究进展(特邀) . 红外与激光工程, 2022, 51(6): 20220237-1-20220237-14. doi: 10.3788/IRLA20220237
    [9] 刘洋, 曹前, 刁新财, 魏志义, 常国庆.  超快光纤激光驱动的长波中红外飞秒脉冲光源(特邀) . 红外与激光工程, 2021, 50(8): 20210368-1-20210368-15. doi: 10.3788/IRLA20210368
    [10] 祖嘉琦, 武帅, 张海涛, 耿东晛, 卢姁.  光纤饱和吸收体掺镱全光纤化激光器 . 红外与激光工程, 2020, 49(6): 20190382-1-20190382-6. doi: 10.3788/IRLA20190382
    [11] 姜曼, 马鹏飞, 粟荣涛, 李灿, 吴坚, 马阎星, 周朴.  激光光谱合成技术研究进展与展望(特邀) . 红外与激光工程, 2020, 49(12): 20201053-1-20201053-18. doi: 10.3788/IRLA20201053
    [12] 支冬, 马阎星, 马鹏飞, 粟荣涛, 陈子伦, 周朴, 司磊.  公里级湍流大气环境下光纤激光高效相干合成 . 红外与激光工程, 2019, 48(10): 1005007-1005007(4). doi: 10.3788/IRLA201948.1005007
    [13] 王郁飞, 李雷, 赵鹭明.  时分复制脉冲放大技术在超快光纤激光器中的应用研究进展 . 红外与激光工程, 2018, 47(8): 803010-0803010(10). doi: 10.3788/IRLA201847.0803010
    [14] 陈子伦, 周旋风, 王泽锋, 许晓军.  高功率光纤激光器功率合束器的研究进展(特邀) . 红外与激光工程, 2018, 47(1): 103005-0103005(7). doi: 10.3788/IRLA201746.0103005
    [15] 张森, 张军伟, 周忆, 王逍, 母杰, 粟敬钦, 胡东霞.  基于小口径反射镜的大口径拼接光栅压缩器设计 . 红外与激光工程, 2018, 47(11): 1142002-1142002(8). doi: 10.3788/IRLA201847.1142002
    [16] 余光其, 王鹏, 宋伟, 刘奎永.  光纤激光泵浦的多波长中红外光参量振荡器 . 红外与激光工程, 2018, 47(4): 404003-0404003(7). doi: 10.3788/IRLA201847.0404003
    [17] 张璟璞, 杨依枫, 赵翔, 柏刚, 何兵, 周军.  外腔振荡式光纤激光光谱合成系统 . 红外与激光工程, 2018, 47(1): 103008-0103008(6). doi: 10.3788/IRLA201746.0103008
    [18] 洪梓铭, 艾青松, 陈昆.  基于光纤激光的高精度三维视觉测量技术 . 红外与激光工程, 2018, 47(8): 803011-0803011(8). doi: 10.3788/IRLA201847.0803011
    [19] 粟荣涛, 周朴, 张鹏飞, 王小林, 马阎星, 马鹏飞.  超短脉冲光纤激光相干合成(特邀) . 红外与激光工程, 2018, 47(1): 103001-0103001(19). doi: 10.3788/IRLA201847.0103001
    [20] 王雄, 王小林, 周朴, 粟荣涛, 耿超, 李新阳, 许晓军, 舒柏宏.  光纤激光相干合成中倾斜和锁相同时控制的实验研究 . 红外与激光工程, 2013, 42(6): 1443-1447.
  • 加载中
计量
  • 文章访问数:  432
  • HTML全文浏览量:  76
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-07
  • 修回日期:  2018-05-12
  • 刊出日期:  2018-08-25

基于计算技术的超快光纤激光研究进展与展望(特邀)

doi: 10.3788/IRLA201847.0803001
    作者简介:

    周朴(1984-),男,研究员,博士,主要从事光纤激光与光束合成技术等方面的研究。Email:zhoupu203@163.com

基金项目:

中国科协青年人才托举工程;湖南省科协中青年学者培养计划

  • 中图分类号: O438

摘要: 计算技术的引入给超快光纤激光带来了全新的研究方法和实际效果。文中简要总结计算技术应用于脉冲光纤激光的研究历程,梳理发展脉络,全面展示了计算技术促进超快光纤激光研究发展的使能特性。计算技术与超快光纤研究的进一步深度融合,有可能开辟新的研究与应用领域。

English Abstract

参考文献 (55)

目录

    /

    返回文章
    返回