留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同尺寸、形状和组成的金纳米颗粒的光热特性:在癌症治疗中的应用

谷伟 张锦岚 彭亮 曹为午 邓海华 陶文铨

谷伟, 张锦岚, 彭亮, 曹为午, 邓海华, 陶文铨. 不同尺寸、形状和组成的金纳米颗粒的光热特性:在癌症治疗中的应用[J]. 红外与激光工程, 2018, 47(11): 1121005-1121005(9). doi: 10.3788/IRLA201847.1121005
引用本文: 谷伟, 张锦岚, 彭亮, 曹为午, 邓海华, 陶文铨. 不同尺寸、形状和组成的金纳米颗粒的光热特性:在癌症治疗中的应用[J]. 红外与激光工程, 2018, 47(11): 1121005-1121005(9). doi: 10.3788/IRLA201847.1121005
Gu Wei, Zhang Jinlan, Peng Liang, Cao Weiwu, Deng Haihua, Tao Wenquan. Photothermal characteristics of gold nanoparticles of different size, shape, and composition: application in photothermal therapy[J]. Infrared and Laser Engineering, 2018, 47(11): 1121005-1121005(9). doi: 10.3788/IRLA201847.1121005
Citation: Gu Wei, Zhang Jinlan, Peng Liang, Cao Weiwu, Deng Haihua, Tao Wenquan. Photothermal characteristics of gold nanoparticles of different size, shape, and composition: application in photothermal therapy[J]. Infrared and Laser Engineering, 2018, 47(11): 1121005-1121005(9). doi: 10.3788/IRLA201847.1121005

不同尺寸、形状和组成的金纳米颗粒的光热特性:在癌症治疗中的应用

doi: 10.3788/IRLA201847.1121005
基金项目: 

国家自然科学基金(51136004)

详细信息
    作者简介:

    谷伟(1986-),男,工程师,博士,主要从事微纳米结构材料光学特性方面的研究。Email:guwei.nht@hotmail.com

  • 中图分类号: R730.57

Photothermal characteristics of gold nanoparticles of different size, shape, and composition: application in photothermal therapy

  • 摘要: 光热疗法由于其安全和高效的优点,作为一种非破坏性方法在癌症治疗中有广泛的应用前景。光热疗法中,所采用的纳米颗粒在近红外波段的光热转换效率取决于纳米颗粒的光谱吸收特性。采用时域有限差分法对球型、壳型、杆型、片型、笼型、星型和花型等七种不同金纳米颗粒的光谱吸收特性进行了仿真计算,结果表明纳米颗粒的几何参数和结构对其光谱吸收效率和共振波长产生了显著的影响。通过对比七种金纳米颗粒的体积吸收系数,发现金纳米片在近红外波段的光热转换效率优于其他六种金纳米颗粒。从电流密度矢量分布得出,金纳米颗粒内部产生共振电流是导致金纳米颗粒在近红外波段具有明显的单色吸收特性的原因。
  • [1] Ferrari M. Cancer nanotechnology:opportunities and challenges[J]. Nat Rev Cancer, 2005, 5(3):161-171.
    [2] Cheng L, Wang C, Feng L, et al. Functional nanomaterials for phototherapies of cancer[J]. Chemical Reviews, 2014, 114(21):10869-10939.
    [3] Pitsillides C M, Joe E K, Wei X, et al. Selective cell targeting with light-absorbing microparticles and nanoparticles[J]. Biophysical Journal, 2003, 84(6):4023-4032.
    [4] Ritz J P, Roggan A, Isbert C, et al. Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm[J]. Lasers in Surgery and Medicine, 2001, 29(3):205-212.
    [5] Jain P K, El-Sayed I H, El-Sayed M A. Au nanoparticles target cancer[J]. Nano Today, 2007, 2(1):18-29.
    [6] Boris K, Vladimir Z, Andrei M, et al. Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters[J]. Nanotechnology, 2006, 17(20):5167.
    [7] Li Z, Huang H, Tang S, et al. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy[J]. Biomaterials, 2016, 74:144-154.
    [8] Wang Y, Black K C L, Luehmann H, et al. Comparison Study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment[J]. ACS Nano, 2013, 7(3):2068-2077.
    [9] Huang X, El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. Journal of the American Chemical Society, 2006, 128(6):2115-2120.
    [10] Yavuz M S, Cheng Y, Chen J, et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light[J]. Nat Mater, 2009, 8(12):935-939.
    [11] Kam N W S, O'Connell M, Wisdom J A, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(33):11600-11605.
    [12] Hessel C M, Pattani V P, Rasch M, et al. Copper selenide nanocrystals for photothermal therapy[J]. Nano Letters, 2011, 11(6):2560-2566.
    [13] Ni D, Ding H, Liu S, et al. Drug delivery:superior intratumoral penetration of paclitaxel nanodots strengthens tumor restriction and metastasis prevention[J]. Small, 2015, 11(21):2465-2465.
    [14] Tian B, Wang C, Zhang S, et al. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide[J]. ACS Nano, 2011, 5(9):7000-7009.
    [15] Hirsch L R, Stafford R J, Bankson J A, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proceedings of the National Academy of Sciences, 2003, 100(23):13549-13554.
    [16] Loo C, Lin A, Hirsch L, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer[J]. Technology in Cancer Research Treatment, 2004, 3(1):33-40.
    [17] Kim J, Park S, Lee J E, et al. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy[J]. Angewandte Chemie International Edition, 2006, 45(46):7754-7758.
    [18] Madsen S J, Baek S -K, Makkouk A R, et al. Macrophages as cell-based delivery systems for nanoshells in photothermal therapy[J]. Annals of Biomedical Engineering, 2011, 40(2):507-515.
    [19] Dickerson E B, Dreaden E C, Huang X H, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice[J]. Cancer Letters, 2008, 269(1):57-66.
    [20] Huang X, Neretina S, El-Sayed M A. Gold nanorods:from synthesis and properties to biological and biomedical applications[J]. Advanced Materials, 2009, 21(48):4880-4910.
    [21] Maltzahn G, Park J -H, Agrawal A, et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas[J]. Cancer Research, 2009, 69(9):3892-3900.
    [22] Huang X, Tang S, Mu X, et al. Freestanding palladium nanosheets with plasmonic and catalytic properties[J]. Nat Nano, 2011, 6(1):28-32.
    [23] Pelaz B, Grazu V, Ibarra A, et al. Tailoring the synthesis and heating ability of gold nanoprisms for bioapplications[J]. Langmuir, 2012, 28(24):8965-8970.
    [24] Skrabalak S E, Chen J, Sun Y, et al. Gold nanocages:synthesis, properties, and applications[J]. Accounts of Chemical Research, 2008, 41(12):1587-1595.
    [25] Xia Y, Li W, Cobley C M, et al. Gold nanocages:from synthesis to theranostic applications[J]. Accounts of Chemical Research, 2011, 44(10):914-924.
    [26] Tian Q W, Tang M H, Sun Y G, et al. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells[J]. Advanced Materials, 2011, 23(31):3542-3547.
    [27] Julien R G N, Delphine M, Frdric L, et al. Synthesis of PEGylated gold nanostars and bipyramids for intracellular uptake[J]. Nanotechnology, 2012, 23(46):465602.
    [28] Yuan H, Fales A M, Vo-Dinh T. TAT peptide-functionalized gold nanostars:enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance[J]. Journal of the American Chemical Society, 2012, 134(28):11358-11361.
    [29] Yuan H, Khoury C G, Wilson C M, et al. In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars[J]. Nanomedicine:Nanotechnology, Biology and Medicine, 2012, 8(8):1355-1363.
    [30] Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition:applications in biological imaging and biomedicine[J]. The Journal of Physical Chemistry B, 2006, 110(14):7238-7248.
    [31] Huang X, El-Sayed M A. Gold nanoparticles:optical properties and implementations in cancer diagnosis and photothermal therapy[J]. Journal of Advanced Research, 2010, 1(1):13-28.
  • [1] 孙雨佳, 陈方舟, 李晓志.  纳米金属粒子梯度掺杂的硅基近红外吸收增强结构 . 红外与激光工程, 2024, 53(2): 20230519-1-20230519-8. doi: 10.3788/IRLA20230519
    [2] 黄佳裕, 林海枫, 闫培光.  高效率宽调谐扇形MgO: PPLN中红外光参量振荡器 . 红外与激光工程, 2023, 52(5): 20220605-1-20220605-6. doi: 10.3788/IRLA20220605
    [3] 钟文成, 郭文锋, 尚利.  荧光金纳米团簇探针的生物成像应用进展(特邀) . 红外与激光工程, 2022, 51(11): 20220527-1-20220527-10. doi: 10.3788/IRLA20220527
    [4] 史屹君, 武鸿涛, 刘文皓, 苏子博, 刘洋.  近红外光谱吸收技术的无线电子鼻设计 . 红外与激光工程, 2022, 51(5): 20210374-1-20210374-6. doi: 10.3788/IRLA20210374
    [5] 姚文明, 邓力华, 田玉冰, 常奥磊, 王鹏, 陈建生, 檀慧明, 高静.  高转换效率单谐振连续波近红外光学参量振荡器 . 红外与激光工程, 2022, 51(7): 20210654-1-20210654-7. doi: 10.3788/IRLA20210654
    [6] 张丽丽, 杨彦伟.  腔体与纳米金共同作用增强光谱技术 . 红外与激光工程, 2021, 50(1): 20200137-1-20200137-7. doi: 10.3788/IRLA20200137
    [7] 王翔, 张科鹏, 陈壮, 张彬, 陈坚, 赵建华.  光学镜面污染颗粒吸收特性的影响分析 . 红外与激光工程, 2020, 49(4): 0414004-0414004-7. doi: 10.3788/IRLA202049.0414004
    [8] 周振辉, 徐向晏, 刘虎林, 李岩, 卢裕, 钱森, 韦永林, 何凯, 赛小锋, 田进寿, 陈萍.  高量子效率InP/In0.53Ga0.47As/InP红外光电阴极模拟 . 红外与激光工程, 2019, 48(2): 221002-0221002(7). doi: 10.3788/IRLA201948.0221002
    [9] 王琦龙, 李裕培, 翟雨生, 计吉焘, 邹海洋, 陈广甸.  等离激元增强金硅肖特基结近红外光电探测器进展 . 红外与激光工程, 2019, 48(2): 203002-0203002(14). doi: 10.3788/IRLA201948.0203002
    [10] 李博, 徐晓婷, 郑雪晴.  脂肪测量的近红外光谱研究 . 红外与激光工程, 2018, 47(S1): 50-54. doi: 10.3788/IRLA201847.S104003
    [11] 胡以华, 黄宝锟, 顾有林, 赵义正.  生物颗粒远红外波段平均消光效率因子模型构建 . 红外与激光工程, 2018, 47(10): 1004003-1004003(7). doi: 10.3788/IRLA201847.1004003
    [12] 白正元, 张龙, 王康鹏.  二维金纳米阵列制备及其光学响应 . 红外与激光工程, 2017, 46(5): 534001-0534001(6). doi: 10.3788/IRLA201746.0534001
    [13] 吴佳彬, 陈云善, 高世杰, 吴志勇.  高精度近红外光斑位置检测模型研究 . 红外与激光工程, 2016, 45(7): 717001-0717001(7). doi: 10.3788/IRLA201645.0717001
    [14] 李树旺, 邵士勇, 梅海平, 饶瑞中.  大气吸收性成分的光热干涉法测量 . 红外与激光工程, 2016, 45(S1): 163-168. doi: 10.3788/IRLA201645.S111002
    [15] 蒲云体, 王刚, 乔曌, 胡江川, 马平.  激光辐照下金纳米缺陷诱导光学玻璃损伤特性 . 红外与激光工程, 2015, 44(11): 3229-3233.
    [16] 邸志刚, 贾春荣, 姚建铨, 陆颖.  基于银纳米颗粒的HCPCFSERS传感系统优化设计 . 红外与激光工程, 2015, 44(4): 1317-1322.
    [17] 陈向前, 彭滟, 方丹, 周云燕, 刘姝祺, 蔡斌, 朱亦鸣.  真空环境下飞秒激光制备的微构造硅的吸收和退火特性 . 红外与激光工程, 2014, 43(2): 398-403.
    [18] 沈华, 张英聪, 朱日宏.  基于光热位移原理的KDP晶体光吸收系数干涉测量方法的数学模型及结构参数优化 . 红外与激光工程, 2013, 42(12): 3353-3357.
    [19] 郝宏刚, 周翱, 饶敏, 阮巍.  采用光热失调技术的光学薄膜吸收均匀性测量系统 . 红外与激光工程, 2013, 42(10): 2842-2845.
    [20] 王迎威, 王飞, 符力平, 方靖岳, 王广, 常胜利, 张学骜.  介孔氧化铝组装金纳米颗粒阵列及其光学性质 . 红外与激光工程, 2013, 42(11): 3047-3052.
  • 加载中
计量
  • 文章访问数:  485
  • HTML全文浏览量:  76
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-05
  • 修回日期:  2018-07-08
  • 刊出日期:  2018-11-25

不同尺寸、形状和组成的金纳米颗粒的光热特性:在癌症治疗中的应用

doi: 10.3788/IRLA201847.1121005
    作者简介:

    谷伟(1986-),男,工程师,博士,主要从事微纳米结构材料光学特性方面的研究。Email:guwei.nht@hotmail.com

基金项目:

国家自然科学基金(51136004)

  • 中图分类号: R730.57

摘要: 光热疗法由于其安全和高效的优点,作为一种非破坏性方法在癌症治疗中有广泛的应用前景。光热疗法中,所采用的纳米颗粒在近红外波段的光热转换效率取决于纳米颗粒的光谱吸收特性。采用时域有限差分法对球型、壳型、杆型、片型、笼型、星型和花型等七种不同金纳米颗粒的光谱吸收特性进行了仿真计算,结果表明纳米颗粒的几何参数和结构对其光谱吸收效率和共振波长产生了显著的影响。通过对比七种金纳米颗粒的体积吸收系数,发现金纳米片在近红外波段的光热转换效率优于其他六种金纳米颗粒。从电流密度矢量分布得出,金纳米颗粒内部产生共振电流是导致金纳米颗粒在近红外波段具有明显的单色吸收特性的原因。

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回