留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型滤波器对星载高光谱分辨率激光雷达532 nm通道回波信号的影响

余骁 闵敏 张兴赢 孟晓阳 邓小波

余骁, 闵敏, 张兴赢, 孟晓阳, 邓小波. 典型滤波器对星载高光谱分辨率激光雷达532 nm通道回波信号的影响[J]. 红外与激光工程, 2018, 47(12): 1230008-1230008(10). doi: 10.3788/IRLA201847.1230008
引用本文: 余骁, 闵敏, 张兴赢, 孟晓阳, 邓小波. 典型滤波器对星载高光谱分辨率激光雷达532 nm通道回波信号的影响[J]. 红外与激光工程, 2018, 47(12): 1230008-1230008(10). doi: 10.3788/IRLA201847.1230008
Yu Xiao, Min Min, Zhang Xingying, Meng Xiaoyang, Deng Xiaobo. Effect of typical filters on return signals of spaceborne HRSL channel at 532 nm[J]. Infrared and Laser Engineering, 2018, 47(12): 1230008-1230008(10). doi: 10.3788/IRLA201847.1230008
Citation: Yu Xiao, Min Min, Zhang Xingying, Meng Xiaoyang, Deng Xiaobo. Effect of typical filters on return signals of spaceborne HRSL channel at 532 nm[J]. Infrared and Laser Engineering, 2018, 47(12): 1230008-1230008(10). doi: 10.3788/IRLA201847.1230008

典型滤波器对星载高光谱分辨率激光雷达532 nm通道回波信号的影响

doi: 10.3788/IRLA201847.1230008
基金项目: 

国家重点研发计划(2017YFB0504001,2016YFB0500705);国家自然科学基金(41475032,41571348,41601400,41775028)

详细信息
    作者简介:

    余骁(1992-),男,硕士生,主要从事星载激光雷达方面的研究。Email:274779518@qq.com

  • 中图分类号: TN958.98

Effect of typical filters on return signals of spaceborne HRSL channel at 532 nm

  • 摘要: 高光谱分辨率激光雷达(High Spectral Resolution Lidar,HSRL)系统利用窄带滤波器将激光雷达回波信号中的大气粒子(云或气溶胶)散射和分子散射成分分开,提升了云或气溶胶光学特性的反演质量。提出了一种基于HSRL探测原理的HSRL回波信号模拟方法,其原理是利用CALIPSO云/气溶胶消光系数产品和数值天气预报数据被用来仿真星载HSRL 532 nm回波信号。两种典型的窄带光谱滤波器:FPI(Fabry-Prot Interferometer)和碘吸收滤波器,作为分子通道滤波器的性能通过仿真的星载HSRL回波信号进行分析。对三种典型:晴空、卷云、气溶胶(两层厚云)的HSRL回波廓线进行详细的敏感分析表明碘分子吸收滤波器的性能明显优于FPI滤波器,其中碘吸收滤波能保持可以忽略不计的相对偏差(4.010-3%),这是由低光学厚度(1.0)的粒子后向散射效应引起的。但是,如果FPI滤波器的粒子后向散射透过率能保持在10-3水平以下,其仍不失为是一个好的选择。
  • [1] Winker D M, Couch R H, Mccormick M P. An overview of LITE:NASA's lidar in-space technology experiment[J]. Proceedings of the IEEE, 1996, 84(2):164-180.
    [2] Winker D M, Pelon J R, Mccormick M P. The CALIPSO mission:spaceborne lidar for observation of aerosols and clouds[C]//International Asia-Pacific Environmental Remote Sensing, Remote Sensing of the Atmosphere, Ocean, Environment, and Space. International Society for Optics and Photonics, 2003:1211-1229.
    [3] Lu Xianyang, Li Xuebin, Qin Wubin, et al. Retrieval of horizontal distribution of aerosol mass concentration by micro pulse lidar[J]. Optics and Precision Engineering, 2017, 25(7):1697-1704. (in Chinese)鲁先洋, 李学彬, 秦武斌, 等. 微脉冲激光雷达反演气溶胶的水平分布[J]. 光学精密工程, 2017, 25(7):1697-1704.
    [4] Winker D M, Hunt W H, Mcgill M J. Initial performance assessment of CALIOP[J]. Geophysical Research Letters, 2007, 34(19):228-262.
    [5] Min M, Wang P, Campbell J R, et al. Midlatitude cirrus cloud radiative forcing over China[J]. Journal of Geophysical Research Atmospheres, 2010, 115(D20):898-907.
    [6] Pan H, Bu L, Kumar K R, et al. A new retrieval method for the ice water content of cirrus using data from the CloudSat and CALIPSO[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 161(7):134-142.
    [7] Shan Kunling, Liu Xinbo, Bu Lingbing, et al. Joint inversion method of cirrus physical properties using both Lidar and millimeter wave radar[J]. Infrared and Laser Engineering, 2015, 44(9):2742-2746. (in Chinese)单坤玲, 刘新波, 卜令兵,等. 激光雷达和毫米波雷达的卷云微物理特性的联合反演方法[J]. 红外与激光工程, 2015, 44(9):2742-2746.
    [8] Fernald F G. Analysis of atmospheric lidar observations:some comments[J]. Applied Optics, 1984, 23(5):000652.
    [9] Ding Hongxing, Dai Liling, Sun Dongsong. Spatial distribution of aerosol in troposphere measured by lidar at slant range[J]. Infrared and Laser Engineering, 2010, 39(3):442-446. (in Chinese)丁红星, 戴丽莉, 孙东松. 激光雷达斜程探测的对流层气溶胶空间分布[J]. 红外与激光工程, 2010, 39(3):442-446.
    [10] Omar A H, Winker D M, Kittaka C, et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(10):1994-2014.
    [11] Shipley S T, Tracy D H, Eloranta E W, et al. A high spectral resolution lidar to measure optical scattering properties of atmospheric aerosols, Part I:Instrumentation and theory[J]. Applied Optics, 1984, 22(23):3716-3724.
    [12] Grund C J, Eloranta E W. University of wisconsin high spectral resolution lidar[J]. Optical Engineering, 1991, 30(30):6-12.
    [13] Liu D, Hostetler C, Miller I, et al. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar[J]. Optics Express, 2012, 20(2):1406.
    [14] She C Y, Alvarez Ii R J, Caldwell L M, et al. High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles[J]. Applied Physics B, 1992, 17(7):541-543.
    [15] Liu Z, Matsui I, Sugimoto N. High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements[J]. Optical Engineering, 1999, 38(10):1661-1670.
    [16] Silva A, Swap R, Maring H, et al. ACE 2011-2015 progress report and future outlook[D]. US:NASA, 2017.
    [17] Eloranta E W, Roesler F L, Sroga J T. High Spectral Resolution Lidar[M]. Berlin:Springer, 1983:308-315.
    [18] Vaughan M A, Powell K A, Kuehn R E, et al. Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(10):2034-2050.
    [19] Jursa A S. Handbook of geophysics and the space environment[D]. Germany:Research Gate, 1985.
    [20] Bodhaine B A, Wood N B, Dutton E G, et al. On Rayleigh optical depth calculations[J]. Journal of Atmospheric and Oceanic Technology, 1999, 16(11):1854-1861.
    [21] Cairo F, Di D G, Adriani A, et al. Comparison of various linear depolarization parameters measured by lidar[J]. Applied Optics, 1999, 38(21):4425-4432.
    [22] Serdyuchenko A, Gorshelev V, Weber M, et al. New broadband high-resolution ozone absorption crosssections[J]. Spectroscopy Europe, 2011(6):confETE11S.
    [23] Liu Z, Voelger P, Sugimoto N. Simulations of the observation of clouds and aerosols with the experimental lidar in space Equipment system[J]. Applied Optics, 2000, 39(18):3120-3137.
    [24] Hernandez G. Analytical description of a Fabry-Perot photoelectric spectrometer[J]. Applied Optics, 1966, 5(11):1745-1748.
    [25] Forkey J N, Lempert W R, Miles R B. Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths[J]. Applied Optics, 1997, 36(27):6729-6738.
    [26] Esselborn M, Wirth M, Fix A, et al. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients[J]. Applied Optics, 2008, 47(3):346-358.
    [27] Cheng Z, Liu D, Yang Y, et al. Interferometric filters for spectral discrimination in high-spectral-resolution lidar:performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer[J]. Applied Optics, 2013, 52(32):7838-7850.
    [28] Hair J W, Hostetler C A, Cook A L, et al. Airborne high spectral resolution lidar for profiling aerosol optical properties[J]. Applied Optics, 2008, 47(36):6734-6752.
    [29] Bu L, Pan H, Kumar K R, et al. LIDAR and millimeter-wave cloud RADAR(MWCR) techniques for joint observations of cirrus in Shouxian (32.56N, 116.78E), China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 148:64-73.
  • [1] 高有道, 李福东, 沈正祥, 丁琳, 胡斌, 徐绍伟.  低温红外镜头设计仿真方法及试验验证 . 红外与激光工程, 2021, 50(5): 20200397-1-20200397-6. doi: 10.3788/IRLA20200397
    [2] 刘雯雯, 苏伟, 罗文豪, 李健坷, 刘人怀.  中红外固体激光器的振动可靠性 . 红外与激光工程, 2021, 50(4): 20200242-1-20200242-6. doi: 10.3788/IRLA20200242
    [3] 王凤杰, 刘锡民, 陆长平.  相干激光引信在云雾干扰下的回波特性研究 . 红外与激光工程, 2020, 49(4): 0403006-0403006-7. doi: 10.3788/IRLA202049.0403006
    [4] 张海岩, 李振, 赵晨, 王学锋.  封装对超细型DFB光纤激光水听器性能的影响(特邀) . 红外与激光工程, 2018, 47(9): 903002-0903002(7). doi: 10.3788/IRLA201847.0903002
    [5] 李丁, 马慧娟, 茹宁, 王宇.  拉曼激光光学锁相环参数设计及仿真 . 红外与激光工程, 2018, 47(4): 406007-0406007(7). doi: 10.3788/IRLA201847.0406007
    [6] 吴俊政, 严卫东, 倪维平, 张晗.  圆周阵列太赫兹干涉成像仿真 . 红外与激光工程, 2017, 46(8): 825002-0825002(8). doi: 10.3788/IRLA201746.0825002
    [7] 卢新然, 宋路, 万秋华.  红外光源参数对光电编码器信号的影响 . 红外与激光工程, 2017, 46(9): 917007-0917007(6). doi: 10.3788/IRLA201746.0917007
    [8] 王炜强, 贾晓洪, 韩宇萌, 张晓阳, 付奎生.  定向干扰激光的红外成像建模与仿真 . 红外与激光工程, 2016, 45(6): 606005-0606005(6). doi: 10.3788/IRLA201645.0606005
    [9] 殷世民, 王具民, 梁永波, 朱健铭, 韩国成, 陈洪波, 陈真诚.  红外干涉光谱仪非均匀性在线校正与仿真 . 红外与激光工程, 2016, 45(6): 604002-0604002(8). doi: 10.3788/IRLA201645.0604002
    [10] 张明军, 高文英, 牛泉云, 袁兴起.  聚光光伏系统菲涅耳聚光器性能分析与仿真 . 红外与激光工程, 2015, 44(8): 2411-2416.
    [11] 王良训, 周辉, 李子乐, 刘国根, 王虹, 王雅培.  面向星载激光测高仪的陆地目标响应函数仿真 . 红外与激光工程, 2015, 44(11): 3424-3430.
    [12] 廖志波, 焦文春, 伏瑞敏.  光学表面中高频误差的仿真分析 . 红外与激光工程, 2014, 43(6): 1905-1908.
    [13] 童奇, 王超哲, 童中翔, 李建勋, 贾林通, 柴世杰.  红外干扰机对四元正交探测器的干扰效能 . 红外与激光工程, 2014, 43(8): 2496-2504.
    [14] 范丹, 陈淑芬, 高远, 付雷, 邹正峰, 孟彦斌.  基于色散控制的全光纤掺镱被动锁模激光器的设计与仿真 . 红外与激光工程, 2014, 43(8): 2399-2403.
    [15] 曹春芹, 向静波, 张晓阳, 王炜强.  红外成像导弹气动加热仿真建模方法 . 红外与激光工程, 2013, 42(8): 1951-1955.
    [16] 成志铎, 李明博, 李健, 常晓权, 刘君.  目标与背景的红外辐射特性仿真方法 . 红外与激光工程, 2013, 42(9): 2336-2340.
    [17] 张文攀, 吴军辉, 胡欣, 梁巍巍, 殷瑞光, 刘艳芳, 汪亚.  基于激光导引头对抗数据的光电对抗效果实验方法 . 红外与激光工程, 2013, 42(3): 637-642.
    [18] 张文攀, 刘艳芳, 殷瑞光, 赵宏鹏, 汪亚.  对激光精确制导武器干扰效果仿真评估标准初探 . 红外与激光工程, 2013, 42(4): 900-903.
    [19] 刘朝山, 刘光斌, 杨波, 周浩.  弹载星敏感器像移模型及其仿真分析 . 红外与激光工程, 2013, 42(5): 1311-1315.
    [20] 张雷洪, 孙刘杰, 马秀华.  激光跟踪中目标卫星表面BRDF对回波信号的影响 . 红外与激光工程, 2012, 41(8): 2048-2052.
  • 加载中
计量
  • 文章访问数:  386
  • HTML全文浏览量:  37
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-05
  • 修回日期:  2018-08-03
  • 刊出日期:  2018-12-25

典型滤波器对星载高光谱分辨率激光雷达532 nm通道回波信号的影响

doi: 10.3788/IRLA201847.1230008
    作者简介:

    余骁(1992-),男,硕士生,主要从事星载激光雷达方面的研究。Email:274779518@qq.com

基金项目:

国家重点研发计划(2017YFB0504001,2016YFB0500705);国家自然科学基金(41475032,41571348,41601400,41775028)

  • 中图分类号: TN958.98

摘要: 高光谱分辨率激光雷达(High Spectral Resolution Lidar,HSRL)系统利用窄带滤波器将激光雷达回波信号中的大气粒子(云或气溶胶)散射和分子散射成分分开,提升了云或气溶胶光学特性的反演质量。提出了一种基于HSRL探测原理的HSRL回波信号模拟方法,其原理是利用CALIPSO云/气溶胶消光系数产品和数值天气预报数据被用来仿真星载HSRL 532 nm回波信号。两种典型的窄带光谱滤波器:FPI(Fabry-Prot Interferometer)和碘吸收滤波器,作为分子通道滤波器的性能通过仿真的星载HSRL回波信号进行分析。对三种典型:晴空、卷云、气溶胶(两层厚云)的HSRL回波廓线进行详细的敏感分析表明碘分子吸收滤波器的性能明显优于FPI滤波器,其中碘吸收滤波能保持可以忽略不计的相对偏差(4.010-3%),这是由低光学厚度(1.0)的粒子后向散射效应引起的。但是,如果FPI滤波器的粒子后向散射透过率能保持在10-3水平以下,其仍不失为是一个好的选择。

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回