留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

选区激光熔化成型316L不锈钢多孔结构的力学性能

曾寿金 吴启锐 叶建华

曾寿金, 吴启锐, 叶建华. 选区激光熔化成型316L不锈钢多孔结构的力学性能[J]. 红外与激光工程, 2020, 49(8): 20190523. doi: 10.3788/IRLA20190523
引用本文: 曾寿金, 吴启锐, 叶建华. 选区激光熔化成型316L不锈钢多孔结构的力学性能[J]. 红外与激光工程, 2020, 49(8): 20190523. doi: 10.3788/IRLA20190523
Zeng Shoujin, Wu Qirui, Ye Jianhua. Mechanical properties of 316L stainless steel porous structure formed by selective laser melting[J]. Infrared and Laser Engineering, 2020, 49(8): 20190523. doi: 10.3788/IRLA20190523
Citation: Zeng Shoujin, Wu Qirui, Ye Jianhua. Mechanical properties of 316L stainless steel porous structure formed by selective laser melting[J]. Infrared and Laser Engineering, 2020, 49(8): 20190523. doi: 10.3788/IRLA20190523

选区激光熔化成型316L不锈钢多孔结构的力学性能

doi: 10.3788/IRLA20190523
基金项目: 国家自然科学基金(51575110);福建省自然科学基金(2016J01202);福建工程学院科研启动基金(GY-Z19118,GY-Z19014)
详细信息
    通讯作者: 曾寿金(1978-),男,副教授,硕士生导师,博士,主要从事激光增材制造技术方面的研究工作。Email:zengshoujin@fjut.edu.cn
  • 中图分类号: TB31; TN249

Mechanical properties of 316L stainless steel porous structure formed by selective laser melting

  • 摘要: 为了减轻或消除人工植入体的“应力屏蔽”效应,提高生物相容性,需要对选区激光熔化(SLM)技术成型多孔结构进行力学性能研究。通过制备316L不锈钢体心立方(BCC)、正十二面体(RD)两种多孔结构,分别进行成型件纵向压缩试验,建立了Gibson-Ashby模型,预测了多孔结构弹性模量值。采用分形插值法,分析了孔隙率、平均孔径、比表面积对多孔结构弹性模量和抗压强度的影响程度。分析试验表明,316L不锈钢多孔结构样件在孔隙率为55.13%~94.74%,平均孔径为1.90~4.22 mm,比表面积0.54~4.33时,其弹性模量为0.375 ~1.716 GPa,抗压强度为43.19~160.31 MPa。对比人骨弹性模量0.9 ~1.7 GPa,满足植入体要求。孔隙率、平均孔径、比表面积对正十二面体多孔结构的弹性模量和抗压强度的幅值变化影响较小,对体心立方多孔结构影响较大。正十二面体多孔结构抗压强度为111.75~160.31 MPa,体心立方多孔结构的抗压强度为43.19~158.03 MPa,正十二面体多孔结构的力学性能比体心立方结构性能更好,为选区激光熔化技术制备316L不锈钢多孔结构的人工植入体研究提供依据。
  • 图  1  316L不锈钢粉末颗粒

    Figure  1.  316L stainless steel powder particles

    图  2  选区激光熔化系统

    Figure  2.  Selective laser melting system

    图  3  多孔单元。(a)正十二面体单元;(b)体心立方结构单元

    Figure  3.  Porous unit. (a) Regular dodecahedron unit; (b) Body centered cubic structural unit

    图  4  多孔样件。(a)正十二面体样件; (b)体心立方结构样件

    Figure  4.  Porous samples. (a) Regular dodecahedron sample; (b) Body centered cubic sample

    图  5  SLM成型多孔结构样件。(a) 正十二面体多孔结构;(b) 体心立方多孔结构

    Figure  5.  SLM shaped porous structure sample. (a) Regular dodecahedron porous structure; (b) Body centered cubic porous structure

    图  6  SLM成型多孔结构显微特性。(a)正十二面体多孔结构;(b)体心立方多孔结构

    Figure  6.  Microscopic features of SLM formed porous structure. (a) Regular dodecahedron porous structure; (b) Body centered cubic porous structure

    图  7  多孔316L不锈钢压缩应力应变曲线。(a) 正十二面体多孔结构;(b)体心立方多孔结构

    Figure  7.  Compression stress and strain curves of porous 316L stainless steel. (a) Regular dodecahedron porous structure; (b) Body centered cubic porous structure

    图  8  (a)孔隙率与弹性模量关系;(b)孔隙率与抗压强度关系(RD:正十二面体多孔结构;BCC:体心立方多孔结构)

    Figure  8.  (a) Relationship between porosity and elastic modulus; (b) Relationship between porosity and compressive strength (RD: porous structure of regular dodecahedron; BCC: body centered cubic porous structure)

    图  9  (a)平均孔径与弹性模量关系;(b)平均孔径与抗压强度关系(RD:正十二面体多孔结构;BCC:体心立方多孔结构)

    Figure  9.  (a) Relation between average pore diameter and elastic modulus; (b) Relation between average pore diameter and compressive strength (RD: porous structure of regular dodecahedron; BCC: body centered cubic porous structure)

    图  10  (a)比表面积与弹性模量关系;(b) 比表面积与抗压强度关系

    Figure  10.  (a) Relationship between volume to area ratio and elastic modulus ; (b) Relationship between volume to area ratio and compressive strength

    表  1  316L不锈钢粉末化学成分(质量分数%)

    Table  1.   Chemical composition of 316L stainless power (wt.%)

    CMnSiCrNiPSMoFe
    ≤0.03<5.00<1.0016.0-18.010.0~25.0≤0.045≤0.03<5.00Allowance
    下载: 导出CSV

    表  2  工艺参数

    Table  2.   Technological parameter

    Laser power /WScan speed /mm·s-1Hatch spacing/mmPowder-bed depth/mmScanning strategy
    2506500.060.02Single-direction sweeping
    下载: 导出CSV

    表  3  多孔单元参数设计

    Table  3.   Parameter design of porous element

    SampleParameterDesign 1Design 2Design 3Design 4Design 5
    Regular dodecahedron structureVolume to area ratio4.333.823.403.042.74
    Average pore diamete/mm3.293.563.784.004.22
    Porosity55.13%60.21%65.46%69.88%72.44%
    Body centered cubic structureVolume to area ratio2.121.260.950.700.54
    Average pore diamete/mm1.902.483.063.644.22
    Porosity79.64%86.82%90.71%93.15%94.74%
    下载: 导出CSV

    表  4  压缩试验计算的抗压强度

    Table  4.   Compressive strength calculated by compression test

    SampleDesign numberAverage compressive
    strength/MPa
    Regular dodecahedron structureDesign 1160.31
    Design 2150.65
    Design 3134.95
    Design 4129.25
    Design 5111.75
    Body centered cubic structureDesign 1158.03
    Design 292.07
    Design 366.97
    Design 453.05
    Design 543.19
    下载: 导出CSV

    表  5  压缩试验计算的弹性模量

    Table  5.   Elastic modulus calculated by compression test

    SampleDesign numberAverage elastic modulus/GPaPredicted value by Gibson-Ashby formula/GPaDeviation
    Regular dodecahedron sampleDesign 11.0422.72946.61%
    Design 21.2232.201
    Design 31.0301.877
    Design 40.9251.769
    Design 50.9191.347
    Body centered cubic structureDesign 11.7163.04927.94%
    Design 21.0701.350
    Design 30.6720.720
    Design 40.5530.464
    Design 50.3750.250
    下载: 导出CSV
  • [1] 孙建华, 刘金龙, 王庆良, 等. 医用316L不锈钢表面改性的研究进展[J]. 材料导报, 2011, 25(9): 95-98.

    Sun Jianhua, Liu Jinlong, Wang Qingliang, et al. Research status of biomedical porous metal materials fabricated by selective laser melting [J]. Materials Reports, 2011, 25(9): 95-98. (in Chinese)
    [2] 张国庆, 李晋, 李俊鑫, 等. 热处理对激光选区熔化成型CoCrMo合金性能影响研究[J]. 红外与激光工程, 2018, 47(1): 0104004. doi:  10.3788/IRLA201847.0104004

    Zhang Guoqing, Li Jin, Li Junxin, et al. Influence of heat treatment on the performance of selective laser melting manufacturing CoCrMo alloy [J]. Infrared and Laser Engineering, 2018, 47(1): 0104004. (in Chinese) doi:  10.3788/IRLA201847.0104004
    [3] 杨永强, 宋长辉, 王迪, 等. 激光选区熔化技术及其在个性化医学中的应用[J]. 机械工程学报, 2014, 50(21): 140-151. doi:  10.3901/JME.2014.21.140

    Yang Yongqiang, Song Changhui, Wang Di, et al. Selective laser melting and its applications on personalized medical parts [J]. Journal of Mechanical Engineering, 2014, 50(21): 140-151. (in Chinese) doi:  10.3901/JME.2014.21.140
    [4] 严惠, 王霄, 梁绘昕, 等. 选区顺序对激光直接制造TC4残余应力及变形的影响[J]. 红外与激光工程, 2019, 48(2): 0242002.

    Yan Hui, Wang Xiao, Liang Huixin, et al. Influence of scanning order on residual stress and deformation in laser direct manufacturing of TC4 [J]. Infrared and Laser Engineering, 2019, 48(2): 0242002. (in Chinese)
    [5] 薛军, 冯建涛, 马长征, 等. 激光冲击强化对激光增材TC4钛合金组织和抗氧化性的影响[J]. 中国光学, 2018, 11(2): 198-205. doi:  10.3788/co.20181102.0198

    Xue Jun, Feng Jiantao, Ma Changzheng, et al. Influence of laser shock peening on microstructure and oxidation resistance of laser additive manufactured TC4 titanium alloy [J]. Chinese Optics, 2018, 11(2): 198-205. (in Chinese) doi:  10.3788/co.20181102.0198
    [6] 张敏, 刘畅, 任博, 等. 3D打印激光制备多孔镍合金组织和力学性能研究[J]. 中国光学, 2016, 9(3): 335-341. doi:  10.3788/co.20160903.0335

    Zhang Min, Liu Chang, Ren Bo, et al. Microstructure and mechanical properties of porous Ni alloy fabricated by laser 3D printing [J]. Chinese Optics, 2016, 9(3): 335-341. (in Chinese) doi:  10.3788/co.20160903.0335
    [7] 吴伟辉, 杨永强, 毛桂生, 等. 激光选区熔化自由制造异质材料零件[J]. 光学 精密工程, 2019, 27(3): 517-526. doi:  10.3788/OPE.20192703.0517

    Wu Weihui, Yang Yongqiang, Mao Guisheng, et al. Free manufacturing of heterogeneous materials part by selective laser melting [J]. Optics and Precision Engineering, 2019, 27(3): 517-526. (in Chinese) doi:  10.3788/OPE.20192703.0517
    [8] Barbas A, Bonnet A-S, Lipinski P, et al. Development and mechanical characterization of porous titanium bone substitutes [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9(3): 34-44.
    [9] Li Zifu, Zhang Chunyu, Qi Liujun, et al. Selective laser melting bone-compatible pure titanium porous structure [J]. Applied Mechanics & Materials, 2013, 423-426: 833-836.
    [10] Simoneau C, Brailovski V, Terriault P. Design, manufacture and tensile properties of stochastic porous metallic structures [J]. Mechanics of Materials, 2016, 94: 26-37. doi:  10.1016/j.mechmat.2015.11.010
    [11] 杜道中, 刘婷婷, 廖文和, 等. 激光选区熔化熔池光强监测系统设计[J]. 红外与激光工程, 2017, 46(12): 1206002. doi:  10.3788/IRLA201746.1206002

    Du Daozhong, Liu Tingting, Liao Wenhe, et al. Design of monitoring system of melt pool light intensity in selective laser melting [J]. Infrared and Laser Engineering, 2017, 46(12): 1206002. (in Chinese) doi:  10.3788/IRLA201746.1206002
    [12] 柏龙, 熊飞, 陈晓红, 等. SLM制备的Ti6Al4V轻质点阵结构多目标结构优化设计研究[J]. 机械工程学报, 2018, 54(5): 156-165. doi:  10.3901/JME.2018.05.156

    Bo Long, Xiong Fei, Chen Xiaohong, et al. Multi-objective structural optimization design of Ti6Al4V lattice structure formed by SLM [J]. Journal of Mechanical Engineering, 2018, 54(5): 156-165. (in Chinese) doi:  10.3901/JME.2018.05.156
    [13] 吴伟辉, 杨永强, 肖冬明, 等. 激光选区熔化成型可控超轻结构化零件的孔隙生成效果[J]. 光学 精密工程, 2017, 25(6): 1547-1556. doi:  10.3788/OPE.20172506.1547

    Wu Weihui, Yang Yongqiang, Xiao Dongming, et al. Pore forming results of controllable ultra-light structured parts by selective laser melting [J]. Optics and Precision Engineering, 2017, 25(6): 1547-1556. (in Chinese) doi:  10.3788/OPE.20172506.1547
    [14] 黄超. 316L不锈钢力学性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2016: 9-11.

    Huang Chao. Analysis on the mechanical properties of 316L stainless steel[D]. Harbin: Harbin Engineering University, 2016: 9-11. (in Chinese)
    [15] Jaroslav Čapek, Markéta Machová, Michaela Fousová, et al. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting [J]. Materials Science & Engineering C, Materials for Biological Applications, 2016, 69: 631-639.
    [16] 张国庆, 杨永强, 宋长辉, 等. 激光选区熔化成型CoCrMo多孔结构的设计与性能研究[J]. 中国激光, 2015, 42(11): 1103003. doi:  10.3788/CJL201542.1103003

    Zhang Guoqing, Yang Yongqiang, Song Changhui, et al. Study on design and properties of porous CoCrMo alloy structure manufactured by selective laser melting [J]. Chinese Journal of Lasers, 2015, 42(11): 1103003. (in Chinese) doi:  10.3788/CJL201542.1103003
    [17] 孙全平, 梁元凯, 冯春梅, 等. 316不锈钢选区激光熔化成形工艺优化[J]. 热加工工艺, 2016, 45(16): 65-68.

    Sun Quanping, Liang Yuankai, Feng Chunmei, et al. Optimization of selective laser melting forming technology for 316 stainless steel [J]. Hot Working Technology, 2016, 45(16): 65-68. (in Chinese)
    [18] Shaaz Ghouse, Sarat Babu, Kenneth Nai, et al. The influence of laser parameters, scanning strategies and material on the fatigue strength of a stochastic porous structure [J]. Additive Manufacturing, 2018, 22: 290-301. doi:  10.1016/j.addma.2018.05.024
    [19] Erick Ramirez-Cedillo, Jesús A Sandoval-Robles, Leopoldo Ruiz-Huerta, et al. Process planning guidelines in selective laser melting for the manufacturing of stainless steel parts [J]. Procedia Manufacturing, 2018, 26: 973-982. doi:  10.1016/j.promfg.2018.07.125
    [20] Lorna J. Gibson, Michael F Ashby. Cellular Solids: Structure and Properties[M]. Cambridge: Cambridge University Press, 1997: 161-179.
    [21] Vassilis Karageorgiou, David Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis [J]. Biomaterials, 2005, 26(27): 5474-5491. doi:  10.1016/j.biomaterials.2005.02.002
    [22] 傅凯杰. 具有药物携带功能的多孔种植体及SLM制备[D]. 杭州: 浙江工业大学, 2016: 1-14.

    Fu Kaijie. Porous dental implants with drug delivery function and SLM manufacture[D]. Hangzhou: Zhejiang University of Technology, 2016: 1-14. (in Chinese)
    [23] 孙洪泉. 分形几何与分形插值[M]. 北京: 科学出版社, 2011: 1-8.

    Sun Hongquan. Fractal Geometry and Fractal Interpolation[M]. Beijing: Science Press, 2011: 1-8. (in Chinese)
    [24] 王勃, 樊瑜波, 陈孟诗, 等. 国人的股骨和胫骨各向异性力学参数和轴向流变特性测试[J]. 生物医学工程学杂志, 2016, 23(3): 75-78.

    Wang Bo, Fan Yubo, Chen Mengshi, et al. Testing of anisotropic modulus and fluid characteristic of chinese femur and tibia [J]. Journal of Biomedical Engineering, 2016, 23(3): 75-78. (in Chinese)
  • [1] 王蔚, 王孝宇, 刘伟军, 邢飞, 王静.  光斑搭接率对GH3030合金表面积碳及氧化物清洗质量的影响 . 红外与激光工程, 2023, 52(2): 20220164-1-20220164-10. doi: 10.3788/IRLA20220164
    [2] 蔡家轩, 万乐, 石世宏, 吴捷, 杨强, 石拓, 程梦颖.  激光熔化沉积AlSi10Mg温度场对显微组织性能的影响 . 红外与激光工程, 2022, 51(5): 20210366-1-20210366-10. doi: 10.3788/IRLA20210366
    [3] 常兵涛, 陈传法, 郭娇娇, 武慧明.  机载LiDAR点云分块插值滤波 . 红外与激光工程, 2021, 50(9): 20200369-1-20200369-9. doi: 10.3788/IRLA20200369
    [4] 相超, 王道档, 窦进超, 孔明, 刘璐, 许新科.  光学偏折子孔径拼接面形检测技术 . 红外与激光工程, 2021, 50(11): 20210105-1-20210105-7. doi: 10.3788/IRLA20210105
    [5] 严惠, 王霄, 梁绘昕, 田宗军, 谢德巧, 徐国建.  选区顺序对激光直接制造TC4残余应力及变形的影响 . 红外与激光工程, 2019, 48(2): 242002-0242002(8). doi: 10.3788/IRLA201948.0242002
    [6] 彭进, 张文洁, 王星星, 郭国全, 张芙蓉.  焊丝熔化填充方式对激光焊接熔池影响的数值模拟 . 红外与激光工程, 2018, 47(3): 306005-0306005(7). doi: 10.3788/IRLA201847.0306005
    [7] 孙兴伟, 于欣玉, 董祉序, 杨赫然.  激光三角法高精度测量模型 . 红外与激光工程, 2018, 47(9): 906008-0906008(6). doi: 10.3788/IRLA201847.0906008
    [8] 胡以华, 黄宝锟, 顾有林, 赵义正.  生物颗粒远红外波段平均消光效率因子模型构建 . 红外与激光工程, 2018, 47(10): 1004003-1004003(7). doi: 10.3788/IRLA201847.1004003
    [9] 吴谨, 赵志龙, 白涛, 李明磊, 李丹阳, 万磊, 唐永新, 刁伟伦.  差分合成孔径激光雷达高分辨率成像实验 . 红外与激光工程, 2018, 47(12): 1230003-1230003(7). doi: 10.3788/IRLA201847.1230003
    [10] 张国庆, 李晋, 李俊鑫, 张成光, 王安民.  热处理对激光选区熔化成型CoCrMo合金性能影响研究 . 红外与激光工程, 2018, 47(1): 106004-0106004(9). doi: 10.3788/IRLA201847.0106004
    [11] 袁影, 王晓蕊, 吴雄雄, 穆江浩, 张艳.  多孔径压缩编码超分辨率大视场成像方法 . 红外与激光工程, 2017, 46(8): 824001-0824001(7). doi: 10.3788/IRLA201746.0824001
    [12] 杜道中, 刘婷婷, 廖文和, 张长东, 张凯.  激光选区熔化熔池光强监测系统设计 . 红外与激光工程, 2017, 46(12): 1206002-1206002(6). doi: 10.3788/IRLA201746.1206002
    [13] 王洪浩, 明名, 吕天宇, 邹惠莹.  高陡度保形光学非球面环形子孔径检测方法 . 红外与激光工程, 2016, 45(4): 417001-0417001(7). doi: 10.3788/IRLA201645.0417001
    [14] 唐禹, 秦宝, 晏芸, 汪路锋, 邢孟道.  多发多收合成孔径激光雷达高分辨率宽测绘带成像 . 红外与激光工程, 2016, 45(8): 830001-0830001(8). doi: 10.3788/IRLA201645.0830001
    [15] 张红颖, 易建军, 于之靖.  基于分形插值的频域散斑相关法面内位移测量 . 红外与激光工程, 2016, 45(9): 917004-0917004(6). doi: 10.3788/IRLA201645.0917004
    [16] 肖冬明, 何宽芳, 王迪.  基于多层有限元模型的激光选区熔化多层瞬态温度场演化规律研究 . 红外与激光工程, 2015, 44(9): 2672-2678.
    [17] 李想, 吴钢, 周刚, 毕柯, 汤智胤, 张青枝, 马计.  激光光热法测试YBCO 高温超导带材热扩散率 . 红外与激光工程, 2014, 43(6): 1740-1744.
    [18] 吴谨, 李斐斐, 赵志龙, 杨兆省, 王东蕾, 唐永新, 苏园园, 梁娜.  条带模式合成孔径激光雷达不依赖PGA的高分辨率成像演示 . 红外与激光工程, 2014, 43(11): 3559-3564.
    [19] 唐淑君, 刘洪喜, 张晓伟, 王传琦, 蔡川雄, 蒋业华.  H13钢表面激光选区熔覆Ni-Al金属间化合物涂层的组织与性能 . 红外与激光工程, 2014, 43(5): 1621-1626.
    [20] 朱斌, 樊祥, 程正东.  地基分布孔径红外系统的作用距离模型 . 红外与激光工程, 2013, 42(11): 2871-2875.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  755
  • HTML全文浏览量:  222
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-08
  • 修回日期:  2020-01-19
  • 录用日期:  2016-01-13
  • 网络出版日期:  2020-09-22
  • 刊出日期:  2020-08-28

选区激光熔化成型316L不锈钢多孔结构的力学性能

doi: 10.3788/IRLA20190523
    通讯作者: 曾寿金(1978-),男,副教授,硕士生导师,博士,主要从事激光增材制造技术方面的研究工作。Email:zengshoujin@fjut.edu.cn
基金项目:  国家自然科学基金(51575110);福建省自然科学基金(2016J01202);福建工程学院科研启动基金(GY-Z19118,GY-Z19014)
  • 中图分类号: TB31; TN249

摘要: 为了减轻或消除人工植入体的“应力屏蔽”效应,提高生物相容性,需要对选区激光熔化(SLM)技术成型多孔结构进行力学性能研究。通过制备316L不锈钢体心立方(BCC)、正十二面体(RD)两种多孔结构,分别进行成型件纵向压缩试验,建立了Gibson-Ashby模型,预测了多孔结构弹性模量值。采用分形插值法,分析了孔隙率、平均孔径、比表面积对多孔结构弹性模量和抗压强度的影响程度。分析试验表明,316L不锈钢多孔结构样件在孔隙率为55.13%~94.74%,平均孔径为1.90~4.22 mm,比表面积0.54~4.33时,其弹性模量为0.375 ~1.716 GPa,抗压强度为43.19~160.31 MPa。对比人骨弹性模量0.9 ~1.7 GPa,满足植入体要求。孔隙率、平均孔径、比表面积对正十二面体多孔结构的弹性模量和抗压强度的幅值变化影响较小,对体心立方多孔结构影响较大。正十二面体多孔结构抗压强度为111.75~160.31 MPa,体心立方多孔结构的抗压强度为43.19~158.03 MPa,正十二面体多孔结构的力学性能比体心立方结构性能更好,为选区激光熔化技术制备316L不锈钢多孔结构的人工植入体研究提供依据。

English Abstract

    • 临床上对骨损伤的治疗常常采用人工骨移植的方法,人工骨移植能够解决植入骨组织的来源和异体骨抗原性的问题。目前,常用的修复骨损伤的材料有高分子聚合物、金属合金、生物陶瓷等,其中316L不锈钢合金因其价格低廉和良好的耐腐蚀性,一直以来在人工植入体、整形外科等医学领域得到了广泛的应用[1-2]。由于传统的实心316L不锈钢在人工植入体方面存在着“应力屏蔽”效应,生物相容性极差,所以将人工植入体制成多孔结构,改善其弹性模量和抗压强度,满足植入体的生物相容性要求[3]

      增材制造技术[4-6]是20世纪80年代发展起来的先进制造技术。对于金属材料的增材制造技术,选区激光熔化(Selective Laser Melting,SLM)是其重要的分支[7],它利用高能激光束逐层熔化金属粉末,层层累积,成型出三维零件模型[8-11]。因其能够成型出复杂几何特征的零件,且成型零件力学性能优良,致密度高,被广泛应用到医学、航空航天领域中。

      多孔材料是一种规则微观结构的新型轻质高强多功能材料[12-13],具有超轻高强、吸收能量和热渗透等特点,被广泛地应用在医疗、航空航天等领域。黄超[14]在研究316L不锈钢准静态下力学性能时发现,抗压强度是其重要的力学指标,且该材料塑性较强,韧性较好,工程实际应用较为广泛。Jaroslav čapek[15]等人利用选区激光熔化技术制造了孔隙率为87%的316L不锈钢多孔结构,测定了其弹性模量和屈服强度,试验发现多孔结构的力学性能与骨小梁相似。杨永强[16]为获得具备良好力学性能和生物相容性的多孔植入体,成功制备了CoCrMo正六面体和正八面体多孔样件,研究了表面积体积比、孔隙率、平均孔径对样件弹性模量和抗压强度的影响,发现弹性模量和抗压强度随着孔隙率和平均孔径的增大而减小,随表面积体积比的增大而增大。Barbas, A[8]等人在研究纯多孔钛(CPPTi)用作外科植入体时发现,多孔结构孔隙率为53%时能够得到更好的生物相容性。

      虽然众多学者在多孔材料的研究上取得了重大进展,但是在植入体生物相容性问题上仍然存在着“应力屏蔽”现象。为了减轻或消除“应力屏蔽”效应,获得更好的生物相容性,文中选取体心立方结构和正十二面体结构作为结构单元,通过模型预测与纵向压缩试验相结合的方式,分析相关参数对弹性模量和抗压强度的影响,为多孔结构的人工植入体研究提供依据。

    • 试验所用金属粉末为316L不锈钢钢球形粉末,颗粒尺寸为10~45 μm,微观形貌如图1所示。使用前将316L不锈钢金属粉末烘干5 h以上,粉末的化学成分如表1所示。

      图  1  316L不锈钢粉末颗粒

      Figure 1.  316L stainless steel powder particles

      表 1  316L不锈钢粉末化学成分(质量分数%)

      Table 1.  Chemical composition of 316L stainless power (wt.%)

      CMnSiCrNiPSMoFe
      ≤0.03<5.00<1.0016.0-18.010.0~25.0≤0.045≤0.03<5.00Allowance
    • 成型设备采用德国SLM公司进口的SLM-125HL打印机,激光器为IPG光纤激光器,功率为400 W,可成型不锈钢粉末(304、316)、钛合金、镍合金、铝合金等粉末材料。压缩试验设备采用长春机械院研发的SDS100型电液伺服疲劳试验机,该设备可以进行拉伸、压缩、疲劳等常规的力学性能试验。

    • 试验选取多孔结构孔隙率、平均孔径、比表面积作为影响因素,以弹性模量和抗压强度为力学性能指标,分别针对体心立方结构和正十二面体结构设计五种不同大小的多孔样件,选取前期优化的最佳工艺参数[17-19]进行成型试验,工艺参数如表2所示。

      表 2  工艺参数

      Table 2.  Technological parameter

      Laser power /WScan speed /mm·s-1Hatch spacing/mmPowder-bed depth/mmScanning strategy
      2506500.060.02Single-direction sweeping

      制备过程选区激光熔化系统的工作原理如图2所示。样件制备完成后进行纵向压缩试验,分析应力应变曲线,对处理的数据加以分析,得出最终结论。

      图  2  选区激光熔化系统

      Figure 2.  Selective laser melting system

    • 多孔结构是一种内部具有复杂孔洞的腔体结构,通常由棱径和壁板相互联结从而形成网状体。对于多孔结构的力学性能,学者Gibson和Ashby做了大量的研究。研究发现,孔隙率与弹性模量、强度之间的关系符合幂函数特征,并创立了Gibson-Ashby模型[20],即

      $$\dfrac{{{E^*}}}{{{E_s}}} = C{(\dfrac{{{\rho ^{\rm{*}}}}}{{{\rho _s}}})^m}$$

      式中:${E^*}$为316L不锈钢多孔结构的弹性模量;${E_s}$为其固体的弹性模量,大小为210 GPa;${\rho ^*}$为316不锈钢多孔结构的密度;${\rho _s}$为其固体的密度,大小为7.98 g/cm3Cm为几何比例常数,Gibson和Ashby研究得出,开孔多孔结构的C=1、m=2。

      Karageorgiou V在研究三维生物材料支架的孔隙度与成骨时发现,孔隙率大于50%更有益于骨细胞的增长[21],生物相容性有明显的提高。而人体骨骼的弹性模量为0.9 ~1.7 GPa[22],人工植入体的弹性模量在此范围内,且抗压强度越高,生物相容性和优越性越好。笔者利用Solidworks软件,通过改变单元体杆长度,控制单元体的孔隙率、比表面积、平均孔径,且试验样件满足国家标准(GB/T7314—2005),结合Gibson-Ashby模型,设计出的多孔单元孔隙率均大于50%,并预测出不同单元的弹性模量(表5),预测的弹性模量值为0.250~3.049 GPa。孔隙率的增大,势必对多孔结构的弹性模量和抗压强度产生一定影响,为了将多孔结构的弹性模量更加接近人骨的弹性模量,减轻或消除“应力屏蔽”效应,所设计的正十二面体结构杆长L1 = 1.5~1.9 mm,体心立方结构杆长L2 = 2~4 mm,直径均为D = 0.4 mm。多孔单元设计相关参数如表3所示,多孔单元如图3所示。

      表 3  多孔单元参数设计

      Table 3.  Parameter design of porous element

      SampleParameterDesign 1Design 2Design 3Design 4Design 5
      Regular dodecahedron structureVolume to area ratio4.333.823.403.042.74
      Average pore diamete/mm3.293.563.784.004.22
      Porosity55.13%60.21%65.46%69.88%72.44%
      Body centered cubic structureVolume to area ratio2.121.260.950.700.54
      Average pore diamete/mm1.902.483.063.644.22
      Porosity79.64%86.82%90.71%93.15%94.74%

      图  3  多孔单元。(a)正十二面体单元;(b)体心立方结构单元

      Figure 3.  Porous unit. (a) Regular dodecahedron unit; (b) Body centered cubic structural unit

    • 文中所设计的多孔结构模型,通过对多孔单元进行布尔阵列,构造出5×5×5单元体叠加累积的多孔样件,如图4所示。

      图  4  多孔样件。(a)正十二面体样件; (b)体心立方结构样件

      Figure 4.  Porous samples. (a) Regular dodecahedron sample; (b) Body centered cubic sample

    • 利用SDS100型电液伺服疲劳试验机,在样件纵向上施加载荷,压缩的位移速度为1 mm/min,采样频率为10 Hz。压缩停止后,计算机生成位移-载荷数据文件,数据采样结束。

    • 分形几何是由Mandelbrot(1983)发展起来的一门新的数学分支,用来描述自然界中不规则以及杂乱无章的形体特征,而分形插值是其重要的组成部分。

      分形插值[23]是根据分形几何的自相似性原理和迭代函数系的理论将已知数据插值成具有自相似结构的曲线或曲面,任何一个局部都与整体自相似或统计自相似。分形插值,根据整体与局部相似的原理将插值数据点的变化特征映射到了相邻点之间的局部区域,在相邻的两个信息点之间得到局部波状起伏的形状,从而可以得到两信息点之间的局部变化特征。对于大多数的实际情况而言,在相邻两信息点之间并

      不是线性变化或光滑过渡的,而是存在局部变化的特征。因此,对于具有分形特征的形体,两信息点之间有更多更精细一级的波状起伏,用分形插值法分析其结果更加符合实际。利用MATLAB强大的数据分析、图像处理功能,可以实现离散数据点的分形插值拟合。选区激光熔化成型试验过程中,存在零件打印时间长、成本高的问题,故而试验样本数量不能太大。所以,利用分形插值方法能够求得相邻两信息点之间的未知特征,较好地解决在有限样本数据中分析试验规律的问题。

    • 图5为选区激光熔化成型出的多孔结构样件,其表面无明显缺陷。图6为选区激光熔化成型出多孔结构样件的显微特征,通过显微镜对成型质量进行观察,发现样件表面有少量的粉末黏附,多孔结构的梁柱上有轻微的金属粉末烧结残渣。综上可知,样件成型效果较好。

      图  5  SLM成型多孔结构样件。(a) 正十二面体多孔结构;(b) 体心立方多孔结构

      Figure 5.  SLM shaped porous structure sample. (a) Regular dodecahedron porous structure; (b) Body centered cubic porous structure

      图  6  SLM成型多孔结构显微特性。(a)正十二面体多孔结构;(b)体心立方多孔结构

      Figure 6.  Microscopic features of SLM formed porous structure. (a) Regular dodecahedron porous structure; (b) Body centered cubic porous structure

    • 数据采集完成后,取每种设计样块应力应变数据的均值作为最终的结果,通过Origin软件进行应力−应变曲线的绘制。如图7所示,成型的多孔316L不锈钢多孔结构在压缩过程中,由于材料本身塑性较强,无纵向断裂现象,导致应力应变曲线未有断崖式下降,总体成上升趋势。

      图  7  多孔316L不锈钢压缩应力应变曲线。(a) 正十二面体多孔结构;(b)体心立方多孔结构

      Figure 7.  Compression stress and strain curves of porous 316L stainless steel. (a) Regular dodecahedron porous structure; (b) Body centered cubic porous structure

      由上述316L不锈钢的压缩应力-应变曲线,通过对样件的变形行为分析,可以得出其压缩过程可以分为三个阶段:

      (1)弹塑性变形阶段

      在液压柱对样件施加载荷的过程中,316L不锈钢多孔结构内部是承受压缩应力的最主要部分,此阶段,因为压缩应力较小,多孔结构内部发生了弹性变形,进而样件的应力−应变曲线呈线性关系,且施加压缩载荷卸除,样件由于弹性变形可逆性,能够恢复初始状态。

      (2)局部塑性变形阶段

      当施加载荷逐渐增大,多孔结构变形进入局部塑性变形阶段,此阶段应力−应变曲线呈非线性关系,且随着应变的增加,应力的增长趋势越来越缓慢。

      (3)完全塑性变形阶段

      此阶段中,多孔结构样件的变形已十分明显,应变值的增大,应力基本上保持不变或者变化较为缓慢,应力−应变曲线也较为平缓。

    • 通过表4抗压强度数据发现,选区激光熔化技术成型的316L不锈钢多孔结构抗压强度在43.19 ~160.31 MPa之间,满足人骨的抗压强度(102.9 ~140.7 GPa)[24]要求。正十二面体结构的抗压强度幅值变化比体心立方结构小,因为正十二面体多孔结构梁柱数量比点阵多孔结构多,所以自身稳定性较强,能够承受更多的压缩应力。

      通过表5弹性模量数据发现,选区激光熔化技术成型的316L不锈钢多孔结构弹性模量在0.375 ~1.716 GPa之间,满足了人骨组织弹性模量在0.9 ~1.7 GPa的要求,其发展趋势与预测值趋势大致相同。实心316L不锈钢的弹性模量为210 GPa,正十二面体和体心立方多孔结构大幅度的降低了材料的弹性模量,且可通过调节多孔结构的相关参数,达到与人骨组织相同的弹性模量,实现减轻“应力屏蔽”效应的目的,提高了生物相容性。正十二面体和体心立方多孔结构弹性模量较Gibson-Ashby模型误差分别为46.61%、27.94%,体心立方结构弹性模量更加符合预测模型。主要原因是正十二面体单元存在着大量的悬垂结构,导致成型后挂渣和球化现象比体心立方结构更加明显,成型质量相对体心立方结构较差。

      表 4  压缩试验计算的抗压强度

      Table 4.  Compressive strength calculated by compression test

      SampleDesign numberAverage compressive
      strength/MPa
      Regular dodecahedron structureDesign 1160.31
      Design 2150.65
      Design 3134.95
      Design 4129.25
      Design 5111.75
      Body centered cubic structureDesign 1158.03
      Design 292.07
      Design 366.97
      Design 453.05
      Design 543.19

      表 5  压缩试验计算的弹性模量

      Table 5.  Elastic modulus calculated by compression test

      SampleDesign numberAverage elastic modulus/GPaPredicted value by Gibson-Ashby formula/GPaDeviation
      Regular dodecahedron sampleDesign 11.0422.72946.61%
      Design 21.2232.201
      Design 31.0301.877
      Design 40.9251.769
      Design 50.9191.347
      Body centered cubic structureDesign 11.7163.04927.94%
      Design 21.0701.350
      Design 30.6720.720
      Design 40.5530.464
      Design 50.3750.250
    • 通过图8(a)分形插值曲线可以发现,正十二面体多孔结构在孔隙率为55%~62%时,随着孔隙率的增大,弹性模量增大,并在孔隙率为62%左右达到峰值后,弹性模量随着孔隙率的增加而呈现出下降趋势,正十二面体结构受孔隙率影响较小。体心立方多孔结构随着孔隙率的增加一直保持线性下降的趋势,且体心立方结构受孔隙率影响较大。

      图  8  (a)孔隙率与弹性模量关系;(b)孔隙率与抗压强度关系(RD:正十二面体多孔结构;BCC:体心立方多孔结构)

      Figure 8.  (a) Relationship between porosity and elastic modulus; (b) Relationship between porosity and compressive strength (RD: porous structure of regular dodecahedron; BCC: body centered cubic porous structure)

      从图8(b)分形插值曲线可以发现,孔隙率对316L不锈钢多孔结构抗压强度影响趋势与弹性模量大致相同,都随孔隙率增大抗压强度减小。正十二面体多孔结构随孔隙率的增大,抗压强度下降较为缓慢,而孔隙率对体心立方多孔结构影响更为显著。

    • 通过图9(a)分形插值曲线可以看出,平均孔径对正十二面体多孔结构弹性模量的影响呈先增大后减小的趋势,且幅值变化较小,平均孔径达到4 mm后,弹性模量变化趋于稳定。体心立方多孔结构随着平均孔径的增大,始终保持下降趋势,且平均孔径在2~3 mm区间内下降趋势较为迅速,3~4.5 mm区间内较为缓慢,幅值变化较大。

      图  9  (a)平均孔径与弹性模量关系;(b)平均孔径与抗压强度关系(RD:正十二面体多孔结构;BCC:体心立方多孔结构)

      Figure 9.  (a) Relation between average pore diameter and elastic modulus; (b) Relation between average pore diameter and compressive strength (RD: porous structure of regular dodecahedron; BCC: body centered cubic porous structure)

      通过图9(b)分形插值曲线可以看出,平均孔径对316L不锈钢多孔结构的抗压强度影响与对弹性模量的影响基本相同,都随着平均孔径的增大抗压强度减小,且两者的变化趋势都十分明显,正十二面体多孔结构更趋向于线性下降。

    • 通过图10(a)分形插值曲线可以看出,比表面积对316L不锈钢多孔结构弹性模量的影响有所不同,正十二面体多孔结构弹性模量随着比表面积的增大先上升后减小,在比表面积为3.8附近取其峰值,而体心立方多孔结构与比表面积一直保持正相关线性增长,最值差明显高于正十二面体多孔结构。

      图  10  (a)比表面积与弹性模量关系;(b) 比表面积与抗压强度关系

      Figure 10.  (a) Relationship between volume to area ratio and elastic modulus ; (b) Relationship between volume to area ratio and compressive strength

      通过图10(b)分形插值曲线可以看出,316L不锈钢多孔结构的抗压强度随着比表面积的增大而逐渐增大,且均呈现出线性增长,体心立方多孔结构线性相关性更强。比表面积的改变,体心立方多孔结构的抗压强度变化范围要比正十二面体多孔结构大,二者受比表面积影响十分显著。

    • (1) 316L不锈钢粉末在激光的作用下,成型的多孔样件表面附有适量的未熔化或半熔化粉末,且伴随有球化现象产生。压缩过程中,由于316L不锈钢材料塑性较强,未发生断裂现象,且一直以变形失效为主要失效形式,当发生塑性变形后,多孔结构逐渐被压缩致密化。

      (2)通过压缩多孔316L不锈钢多孔结构,得到的弹性模量与Gibson-Ashby模型预测值分别误差为46.61%、27.94%,体心立方体结构试验结果与Gibson-Ashby模型预测值误差较小,正十二面体结构实验结果与Gibson-Ashby模型预测值误差较大,这主要原因是正十二面体单元存在着大量的悬垂结构,导致成型后挂渣和球化现象比体心立方结构更加明显,成型质量相对体心立方结构较差。

      (3)实验制备的多孔316L不锈钢合金结构,孔隙率为55.13%~94.74%,平均孔径为1.90~4.22 mm,比表面积0.54~4.33时,弹性模量在0.375 ~1.716 GPa之间,对比人骨弹性模量0.9 ~1.7 GPa,满足生物相容性要求,减轻了“应力屏蔽”效应。正十二面体多孔结构抗压强度为111.75~160.31 MPa,体心立方多孔结构的抗压强度为43.19~158.03 MPa,正十二面体多孔结构的力学性能比体心立方结构更加优越。

      (4)通过分形插值曲线可知,正十二面体多孔结构弹性模量随着孔隙率、平均孔径、比表面积的增大,先上升后下降。正十二面体多孔结构的抗压强度随着孔隙率、平均孔径的增大而减小,随着比表面积的增大而增大。体心立方多孔结构的弹性模量和抗压强度随孔隙率、平均孔径的增大而减小,随比表面积的增大而增大。

参考文献 (24)

目录

    /

    返回文章
    返回