留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超导探测器的白天卫星激光测距试验与研究

李祝莲 翟东升 张海涛 皮晓宇 伏红林 李荣旺 李鹏飞 张蜡宝 李语强

李祝莲, 翟东升, 张海涛, 皮晓宇, 伏红林, 李荣旺, 李鹏飞, 张蜡宝, 李语强. 基于超导探测器的白天卫星激光测距试验与研究[J]. 红外与激光工程, 2020, 49(8): 20190536. doi: 10.3788/IRLA20190536
引用本文: 李祝莲, 翟东升, 张海涛, 皮晓宇, 伏红林, 李荣旺, 李鹏飞, 张蜡宝, 李语强. 基于超导探测器的白天卫星激光测距试验与研究[J]. 红外与激光工程, 2020, 49(8): 20190536. doi: 10.3788/IRLA20190536
Li Zhulian, Zhai Dongsheng, Zhang Haitao, Pi Xiaoyu, Fu Honglin, Li Rongwang, Li Pengfei, Zhang Labao, Li Yuqiang. Superconductivity detector applied to daytime satellite laser ranging experiment and research[J]. Infrared and Laser Engineering, 2020, 49(8): 20190536. doi: 10.3788/IRLA20190536
Citation: Li Zhulian, Zhai Dongsheng, Zhang Haitao, Pi Xiaoyu, Fu Honglin, Li Rongwang, Li Pengfei, Zhang Labao, Li Yuqiang. Superconductivity detector applied to daytime satellite laser ranging experiment and research[J]. Infrared and Laser Engineering, 2020, 49(8): 20190536. doi: 10.3788/IRLA20190536

基于超导探测器的白天卫星激光测距试验与研究

doi: 10.3788/IRLA20190536
基金项目: 国家自然科学基金(U1431116,U1731112);中国科学院重大科研装备研制项目(ZDYZ2013-2);中国科学院青年创新促进优秀会员(Y201817)
详细信息

Superconductivity detector applied to daytime satellite laser ranging experiment and research

  • 摘要: 超导纳米线单光子探测器是一种新型的单光子探测器,灵敏度高、暗计数低且可工作于恒流模式,对1064 nm波长激光具有较高的探测效率。将该探测器应用于夜间卫星和空间碎片激光测距试验,获得了较好的观测结果。为了使超导探测器的优点在空间目标激光测距中得到充分的应用,通过卫星白天激光测距观测试验以及对白天天空背景光实际响应输出测量等方法,研究分析了超导探测器应用于白天激光测距的可行性。在日落前测到了约20 000 km距离的导航卫星glonass134以及低轨卫星hy2a;实际白天天空背景光测量时,单光子超导探测器最高计数输出可达到约2 MHz。结果表明,使用超导单光子探测器作为回波探测器可实现高性能和高效率的白天激光测距系统。
  • 图  1  试验平台

    Figure  1.  Testing platform

    图  2  Beaconc(~1 000 km)激光测距卫星回波信号

    Figure  2.  Beaconc(~1 000 km) laser ranging satellite echo signal

    图  3  北斗卫星compassi6b (~36 000 km)测距回波信号

    Figure  3.  Beidou satellite compassi6b (~36 000 km) ranging echo signal

    图  4  空间碎片22803 (~850 km,10 m2 RCS)的回波信号

    Figure  4.  Echo signal of space debris 22803 (~850 km, 10 m2 RCS)

    图  5  glonass134(~20 000 km)激光测距界面截图

    Figure  5.  glonass134(~20 000 km) laser ranging interface screenshot

    图  6  hy2a(~1 000 km)激光测距界面截图

    Figure  6.  hy2a(~1 000km) laser ranging interface screenshot

    图  7  天空背景亮度图

    Figure  7.  Sky background brightness map

    图  8  北京时间7:48:59至8:5:18超导探测器输出

    Figure  8.  SNSPD output at 7:48:59 to 8:5:18 Beijing time

    图  9  北京时间8:01:21至8:29:15超导探测器输出

    Figure  9.  SNSPD output at 8:01:21 to 8:29:15 Beijing time

    图  10  北京时间8:20:14至8:55:44超导探测器输出

    Figure  10.  SNSPD output at 8:20:14 to 8:55:44 Beijing time

    图  11  北京时间8:47:42至14:53:23超导探测器输出

    Figure  11.  SNSPD output at 8:47:42 to 14:53:23 Beijing time

    表  1  试验平台主要参数

    Table  1.   Main parameters of testing platform

    ItemValue
    Transmitting telescope diameter/mm 510
    Receiving telescope diameter/mm 1 060
    Laser wavelength/nm 1 064
    Laser pulse energy/mJ 400
    Frequency/Hz 100
    Detecting efficiency of SNSPD(@1064 nm) >60%
    Dead time/ns <50
    下载: 导出CSV

    表  2  获得回波信号的部分卫星

    Table  2.   Part of satellites receiving echo signal

    DateSatellitesSunset epoch/sStart epoch/sΔt/s
    2018-12-22glonass12266 29766 698 401
    2018-12-23glonass13466 328 65 867 –461
    2018-12-23Beaconc66 328 67 034 706
    2018-12-23hy2a66 328 67 444 1 116
    2019-01-24hy2a67 646 67 498 –148
    2019-01-24glonass10367 646 67 811165
    下载: 导出CSV
  • [1] Zhang Labao, Kang Lin, Chen Jian, et al. Fabrication of superconducting nanowire single-photon detector [J]. Acta Physica Sinica, 2011, 60(3): 038501. (in Chinese) doi:  10.7498/aps.60.038501
    [2] 尤立星, 申小芳, 杨晓燕. 超导纳米线单光子探测器的单光子响应[J]. 科学通报, 2009, 54(16): 2416-2420. doi:  10.1007/s11434-009-0221-4

    You Lixing, Shen Xiaofang, Yang Xiaoyan. Single photon response of superconducting nanowire single photon detector [J]. Chinese Sci Bull, 2009, 54(16): 2416-2420. (in Chinese) doi:  10.1007/s11434-009-0221-4
    [3] You Lixing. Status and prospect of superconducting nanowire single photon detection [J]. Infrared and Laser Engineering, 2018, 47(12): 1212001. (in Chinese) doi:  10.3788/IRLA201847.1212001
    [4] Ye Shuhua, Huang Cheng. Astrogeodynamics[M]. Ji'nan: Shandong Science and Technology Publishing House, 2000: 91-118. (in Chinese)
    [5] Xiong Yaoheng. Research on a new technical method for the lunar laser ranging [J]. Publication of the Yunnan Observatory, 2002(01): 73-74. (in Chinese)
    [6] International Laser Ranging Service. Kunming: Site Log[EB/OL].[2017-01-19].https://ilrs.cddis.eosdis.nasa.gov/network/stations/active/KUN2_sitelog.html.
    [7] Zhang Zhongping, Meng Wendong, Zhang Haifeng, et al. Demonstration SLR experiment using superconducting nano-wire single photon detector at 532 nm[C]//2015 ILRS Technical Workshop, 2015.
    [8] Deng Huarong, Wu Zhibo, Tang Kai, et al. 2015 Shanghai astronomical observatory satellite laser ranging observation report [J]. Annals of Shanghai Astronomical Observatory Chinese Academy of Sciences, 2016, 37: 21-32. (in Chinese)
    [9] Li Hao, Chen Sijing, You Lixing, et al. Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging [J]. Optics Express, 2016, 24(4): 3535. doi:  10.1364/OE.24.003535
    [10] Xue Li, Li Ming, Zhang Labao, et al. Long-range laser ranging using superconducting nanowire single-photon detectors [J]. Chinese Optics Letters, 2016, 14(7): 071201. doi:  10.3788/COL201614.071201
    [11] Xue Li, Li Zhulian, Zhang Labao, et al. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength [J]. Optics Letters, 2016, 41(16): 3848-3851. doi:  10.1364/OL.41.003848
    [12] Zhai Dongsheng, Li Yuqiang, Xu Rong, et al. Design and realization of single telescope transmitting and twin receiving laser ranging system at yunnan observatories [J]. Astronomical Research and Technology, 2017, 14(3): 310-316. (in Chinese)
    [13] Yang Fumin, Xiao Zhikun, Chen Wanzhen, et al. Design and measurement results of daytime satellite laser ranging system [J]. Science in China(Series A), 1998(11): 1048-1056. (in Chinese)
    [14] Kang Wenyun, Song Xiaoquan, Wei Zhen. Weak signal detecting method of laser ranging for space target in daytime [J]. Infrared and Laser Engineering, 2014, 43(9): 3026-3029. (in Chinese) doi:  10.3969/j.issn.1007-2276.2014.09.042
    [15] Convenience Inquiry Network. Kunming sunrise and sunset. timetables[EB/OL].[2019-11-05].https://richurimo.51240.com/kunming__time__2018_12__richurimo/.
  • [1] 张明亮, 温冠宇, 范存波, 关博文, 宋清丽, 张海涛, 王爽.  近红外空间碎片激光测距探测成功概率影响因素的研究 . 红外与激光工程, 2024, 53(4): 20230695-1-20230695-8. doi: 10.3788/IRLA20230695
    [2] 吴凡, 翟东升, 李祝莲, 汤儒峰, 皮晓宇, 李语强.  激光测距中激光功率实时监测系统设计与实现 . 红外与激光工程, 2023, 52(10): 20230109-1-20230109-7. doi: 10.3788/IRLA20230109
    [3] 冉建, 曹飞, 姜俊, 张兴.  大电流、高稳定脉冲激光器驱动电路设计与数学分析 . 红外与激光工程, 2020, 49(S1): 20200184-20200184. doi: 10.3788/IRLA20200184
    [4] 李春晓, 李祝莲, 汤儒峰, 李荣旺, 李语强.  一发两收卫星激光测距系统中目标距离测量试验 . 红外与激光工程, 2020, 49(S1): 20200145-20200145. doi: 10.3788/IRLA20200145
    [5] 吴钰, 周木春, 赵琦, 李扬彦, 吴李勇.  脉冲激光测距中阈值—峰值双通道时刻鉴别方法 . 红外与激光工程, 2019, 48(6): 606002-0606002(7). doi: 10.3788/IRLA201948.0606002
    [6] 刘鸿彬, 李铭, 舒嵘, 胡以华, 黄庚华.  少光子灵敏度精密激光测距方法及验证 . 红外与激光工程, 2019, 48(1): 106001-0106001(7). doi: 10.3788/IRLA201948.0106001
    [7] 薛梦凡, 彭冬亮, 荣英佼, 申屠晗, 骆吉安, 陈志坤, 刘智惟.  采用实时功率反馈的半导体激光器幅度调制方法 . 红外与激光工程, 2019, 48(9): 905002-0905002(7). doi: 10.3788/IRLA201948.0905002
    [8] 黄民双, 刘晓晨, 马鹏.  脉冲飞行时间激光测距系统中周期误差补偿 . 红外与激光工程, 2018, 47(3): 317004-0317004(5). doi: 10.3788/IRLA201847.0317004
    [9] 赵力杰, 周艳宗, 夏海云, 武腾飞, 韩继博.  飞秒激光频率梳测距综述 . 红外与激光工程, 2018, 47(10): 1006008-1006008(16). doi: 10.3788/IRLA201847.1006008
    [10] 张海峰, 龙明亮, 邓华荣, 程志恩, 张忠萍.  多望远镜信号接收的激光测距系统探测能力 . 红外与激光工程, 2018, 47(9): 906002-0906002(7). doi: 10.3788/IRLA201847.0906002
    [11] 郭荣幸, 赵亚飞, 马鹏阁, 陈恩庆.  基于非对称sinc函数拟合的激光测距算法优化 . 红外与激光工程, 2017, 46(8): 806008-0806008(7). doi: 10.3788/IRLA201746.0806008
    [12] 张忠萍, 程志恩, 张海峰, 邓华荣, 江海.  地基激光测距系统观测空间碎片及其探测能力研究 . 红外与激光工程, 2017, 46(3): 329001-0329001(7). doi: 10.3788/IRLA201746.0329001
    [13] 薛莉, 翟东升, 李祝莲, 李语强, 熊耀恒, 李明.  激光测距中APD阵列探测信噪比分析 . 红外与激光工程, 2017, 46(3): 306001-0306001(8). doi: 10.3788/IRLA201746.0306001
    [14] 李祝莲, 张海涛, 李语强, 伏红林, 翟东升.  53 cm双筒望远镜高重频空间碎片激光测距系统 . 红外与激光工程, 2017, 46(7): 729001-0729001(5). doi: 10.3788/IRLA201746.0729001
    [15] 张忠萍, 张海峰, 邓华荣, 程志恩, 李朴, 曹建军, 慎露润.  双望远镜的空间碎片激光测距试验研究 . 红外与激光工程, 2016, 45(1): 102002-0102002(7). doi: 10.3788/IRLA201645.0102002
    [16] 许俊峰, 姜春兰, 毛亮, 王在成, 李明.  测距成像一体化引信与可瞄准战斗部配合技术 . 红外与激光工程, 2014, 43(6): 1794-1800.
    [17] 康文运, 宋小全, 韦震.  白天空间目标激光测距微弱信号探测方法 . 红外与激光工程, 2014, 43(9): 3026-3029.
    [18] 杨芳, 张鑫, 贺岩, 陈卫标.  采用高速伪随机码调制和光子计数技术的光纤激光测距系统 . 红外与激光工程, 2013, 42(12): 3234-3238.
    [19] 王心遥, 张珂殊.  基于欠采样的激光测距数字鉴相方法 . 红外与激光工程, 2013, 42(5): 1330-1337.
    [20] 岱钦, 耿岳, 李业秋, 张乐, 郝永平.  利用TDC-GP21的高精度激光脉冲飞行时间测量技术 . 红外与激光工程, 2013, 42(7): 1706-1709.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  541
  • HTML全文浏览量:  134
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-01
  • 修回日期:  2020-06-20
  • 网络出版日期:  2020-09-22
  • 刊出日期:  2020-08-28

基于超导探测器的白天卫星激光测距试验与研究

doi: 10.3788/IRLA20190536
基金项目:  国家自然科学基金(U1431116,U1731112);中国科学院重大科研装备研制项目(ZDYZ2013-2);中国科学院青年创新促进优秀会员(Y201817)
  • 中图分类号: P171.3

摘要: 超导纳米线单光子探测器是一种新型的单光子探测器,灵敏度高、暗计数低且可工作于恒流模式,对1064 nm波长激光具有较高的探测效率。将该探测器应用于夜间卫星和空间碎片激光测距试验,获得了较好的观测结果。为了使超导探测器的优点在空间目标激光测距中得到充分的应用,通过卫星白天激光测距观测试验以及对白天天空背景光实际响应输出测量等方法,研究分析了超导探测器应用于白天激光测距的可行性。在日落前测到了约20 000 km距离的导航卫星glonass134以及低轨卫星hy2a;实际白天天空背景光测量时,单光子超导探测器最高计数输出可达到约2 MHz。结果表明,使用超导单光子探测器作为回波探测器可实现高性能和高效率的白天激光测距系统。

English Abstract

    • 超导纳米线单光子探测器(Superconducting Nanowire Single Photon Detector,SNSPD)是一种利用超导纳米膜条进行光子检测的高灵敏光子探测器,作为一种高性能的单光子探测器,它具有单光子灵敏度、高计数率、低暗计数和低时间抖动等方面的优点,已被广泛应用于量子秘钥分发、光量子计算、激光通信、光纤传感以及激光雷达等技术[1-3]

      卫星激光测距的原理是通过测定激光脉冲在地面观测站与卫星之间的往返时间间隔,并结合光速计算得到地面观测站到卫星的距离[4]。因回波信号微弱,尤其是月球激光测距,回波在亚单光子量级[5],因此,激光测距系统需要配备单光子灵敏度的回波信号探测器。结合单光子探测技术的发展,多年来大多数测距站均采用半导体单光子探测器作为回波光子探测器,例如,微通道板MCP、带时间温度补偿的单光子探测器C-SPAD等[6]

      跟532 nm波长相比,1064 nm波长激光具有产生时不需要倍频晶体、大气透过率高和在相同功率下回波光子数更多等优点,故1064 nm波长激光测距技术近年来被应用到了月球和空间碎片激光测距中。另外,1064 nm波长激光因不可见而有利于进行可见光背景噪声滤除,所以有利于白天激光测距。然而上述单光子探测器因在该波长处量子效率极低(<1%),故不再适用。鉴于超导单光子探测器在1064 nm波长的较高探测效率(>60%),国内研究人员将其应用于空间目标激光测距系统,并开展了大量观测试验:(1)2015年在上海天文台应用中国科学院上海微系统与信息技术研究所研制的SNSPD进行了卫星激光测距试验,测到了Lares测距卫星回波数据,激光波长532 nm,测量精度到~8.0 mm,该星距离地面测距站约3 000 km[7-9]。(2)同年,在云南天文台采用南京大学研制的SNSPD开展了激光测距试验,最远探测到了放置在19 km处地面靶的回波数据,测距波长是532 nm[10]。(3) 2016年,云南天文台开展了基于超导探测器的1064 nm波长的卫星激光测距试验,最远测到了20000 km的导航卫星回波数据[11]。(4) 2017年,云南天文台开展了基于超导探测器的1064 nm波长的空间碎片测距试验,亦测到了大量空间碎片的回波数据。上述试验结果说明SNSPD在激光测距领域中具有很好的应用前景。

      超导单光子探测器采用光纤耦合方式将回波信号引入探测器,这有利于抑制背景噪声对单光子探测器的影响。同时,超导单光子探测器遇较强光则会自动脱离超导状态,从而大大减小了探测器被强光损坏的概率。因此,理论上,具备单光子灵敏度的SNSPD应用于白天激光测距系统将获得很好的测量结果。论文通过中国科学院云南天文台现有的激光测距试验平台,分析研究了将SNSPD应用于白天激光测距系统的可行性并进行测距卫星白天激光测距观测试验。这对将来实现基于1 064 nm激光波长和超导探测器的测距卫星白天常规激光测距观测、空间碎片白天激光测距以及月球白天激光测距具有重要意义。

    • 中国科学院云南天文台于2016年建立了异地收发1 064 nm激光测距平台,图1为其示意图,53 cm双筒望远镜发射激光,1.2 m望远镜接收激光回波光子,两台望远镜距离约30 m[12]。试验平台主要参数如表1所示,发射系统望远镜有效口径为510 mm,激光器单脉冲能量约为400 mJ,波长为1 064 nm,重复频率为100 Hz;接收系统望远镜有效口径为1 060 mm,单光子超导探测器对1 064 nm波长激光的探测效率优于60%,恢复时间少于50 ns。

      图  1  试验平台

      Figure 1.  Testing platform

      表 1  试验平台主要参数

      Table 1.  Main parameters of testing platform

      ItemValue
      Transmitting telescope diameter/mm 510
      Receiving telescope diameter/mm 1 060
      Laser wavelength/nm 1 064
      Laser pulse energy/mJ 400
      Frequency/Hz 100
      Detecting efficiency of SNSPD(@1064 nm) >60%
      Dead time/ns <50

      激光测距时,激光器输出的激光通过53 cm双筒望远镜1级扩束系统后再经E镜、D镜、C镜、B镜以及A镜等五面反射镜依次反射至望远镜副镜,再经望远镜主副镜完成两级扩束后发射至空间目标;被空间目标反射回地面测站的少部分光子信号进入1.2 m望远镜的接收主副镜,然后被其反射至分光镜、反射镜以及缩束系统后从光纤耦合进入超导单光子探测器。

      图2~4分别显示了使用上述试验平台在夜间观测到的Beaconc激光测距卫星、compassi6b北斗卫星以及空间碎片22803的激光测距回波信号情况,横坐标为时间,单位为s,纵坐标为空间目标实测距离与其轨道预报距离之差,单位为ns。观测试验中,探测器工作于无门控的自由模式。

      图  2  Beaconc(~1 000 km)激光测距卫星回波信号

      Figure 2.  Beaconc(~1 000 km) laser ranging satellite echo signal

      图  3  北斗卫星compassi6b (~36 000 km)测距回波信号

      Figure 3.  Beidou satellite compassi6b (~36 000 km) ranging echo signal

      图  4  空间碎片22803 (~850 km,10 m2 RCS)的回波信号

      Figure 4.  Echo signal of space debris 22803 (~850 km, 10 m2 RCS)

    • 结合单光子超导探测器的优点和考虑白天激光测距的强背景噪声等特点[13-14],2018年12月22日、2018年12月23日以及2019年1月24日,使用上述测距试验平台进行了基于超导单光子探测器的晨昏卫星激光测距试验,并获得了部分卫星的白天激光测距回波信号,观测结果如表2所示。

      表 2  获得回波信号的部分卫星

      Table 2.  Part of satellites receiving echo signal

      DateSatellitesSunset epoch/sStart epoch/sΔt/s
      2018-12-22glonass12266 29766 698 401
      2018-12-23glonass13466 328 65 867 –461
      2018-12-23Beaconc66 328 67 034 706
      2018-12-23hy2a66 328 67 444 1 116
      2019-01-24hy2a67 646 67 498 –148
      2019-01-24glonass10367 646 67 811165

      表2可知,2018年12月23日18:17:47开始测到导航卫星glonass134 (约20 000 km)的一段观测数据,这天日落时间为18:25:28[15],因此是在日落前461 s开始观测到数据;2019年1月24日在日落前148秒开始测到测距卫星hy2a (约1 000 km)的一段观测数据。图5图6分别是glonass134和hy2a卫星的白天跟踪测距界面图。横坐标为时间,单位为s,纵坐标为空间目标实测距离与其轨道预报距离之差,单位为ns。

      图  5  glonass134(~20 000 km)激光测距界面截图

      Figure 5.  glonass134(~20 000 km) laser ranging interface screenshot

      图  6  hy2a(~1 000 km)激光测距界面截图

      Figure 6.  hy2a(~1 000km) laser ranging interface screenshot

      图7为2018年12月22日观测到glonass122后于18:38:39用相机拍摄的天空背景亮度图,当天日落时间为18:24:57,因此是日落后13.7 min分拍的。

      图  7  天空背景亮度图

      Figure 7.  Sky background brightness map

      由于发射望远镜和接收望远镜相隔约30 m,且白天卫星不可见,很难实现高精度同步指向,因此,每次试验时均花了大量的时间进行目标搜索,但在不做任何信号衰减时超导单光子探测器在试验时间内均能正常工作,观测结果表明单光子超导探测器可应用于白天空间目标激光测距。

    • 保持激光测距接收系统在夜间测距的状态,2018年12月21日白天使用其对白天天空背景光响应输出进行了测量,以进一步验证超导探测器应用于白天激光测距中的可行性。这一天日出时间为早上北京时间7:48:52,日中时间为北京时间13:06:39[15]。测量试验按以下几步完成:

      (1)将望远镜定点指向东边日出的方向,具体是:方位角为90.5°,俯仰角为42.9°,单光子超导探测器信号输出每秒计数情况如图8所示,随着太阳的升高输出信号快速增加,当计数达到约2 MHz时,超导探测器失去了超导状态,此时太阳的方位为117.3°,俯仰为2.6°。

      图  8  北京时间7:48:59至8:5:18超导探测器输出

      Figure 8.  SNSPD output at 7:48:59 to 8:5:18 Beijing time

      (2)保持望远镜方位角90.5°不变,改变其俯仰角从42.9°到52.9°、63.1°以及79.9°,图9为北京时间8:01:21至8:29:15的单光子超导探测器信号输出每秒计数情况,由图可见,每秒输出计数随着俯仰角的增加而减少。数据采集结束时太阳的方位为120.1°,俯仰为7.3°。

      图  9  北京时间8:01:21至8:29:15超导探测器输出

      Figure 9.  SNSPD output at 8:01:21 to 8:29:15 Beijing time

      (3)保持望远镜俯仰角63.5°不变,改变其方位角从90.5°到180°、270°以及0.3°,即使望远镜指向东南西北四个方向,图10为北京时间8:20:14至8:55:44的单光子超导探测器信号输出每秒计数情况,由图可见,探测器信号输出每秒计数值在东南两个方向的值相对较高,而西北两个方向的值相对较低。数据采集结束时太阳的方位为123.4°,俯仰为12.3°。

      图  10  北京时间8:20:14至8:55:44超导探测器输出

      Figure 10.  SNSPD output at 8:20:14 to 8:55:44 Beijing time

      (4)使望远镜指向北边,定位到方位角0.3°,俯仰角63.6°,图11为北京时间8:47:42至14:53:23的超导探测器信号输出每秒计数情况,由图可知,探测器信号输出每秒计数值低于1.8 MHz,探测器未失去超导状态。数据采集结束时太阳的方位角为210.2°,俯仰角为35.1°,太阳已经过日中位置,即方位角180.0°,俯仰角41.6°。

      图  11  北京时间8:47:42至14:53:23超导探测器输出

      Figure 11.  SNSPD output at 8:47:42 to 14:53:23 Beijing time

      测量结果表明,望远镜与太阳间方位角偏差小于30°且俯仰角偏差小于40°时,输入端不做任何噪声滤波处理的超导探测器将失去超导状态,其它情况下均能正常工作,也说明单光子超导探测器可应用于白天空间目标激光测距。

    • 白天激光测距观测可增加空间目标测距圈数,从而使空间目标轨道覆盖范围内具有越来越短的间隙。但是由于白天天空背景噪声极强且环境温度变化范围大,所以白天激光测距技术比较复杂,实现难度大,高精度指向以及有效的噪声滤波是实现该技术的必要条件。

      论文结合单光子超导探测器的特点及其在激光测距系统中的夜间观测应用情况,在云南天文台1.2 m望远镜1 064 nm波长激光测距试验平台开展了基于超导探测器的卫星白天激光测距试验与研究,从卫星白天激光测距试验情况以及白天背景噪声的测量结果可见,超导单光子探测技术有利于空间目标白天激光测距—恒流工作模式可降低对空间目标的距离预报精度要求;低暗计数又可以减少噪声滤波系统的复杂度;而且遇强光时还会通过失去超导态而实现自我保护。当然,基于无门控的恒流工作模式将使得单位时间内因被噪声触发而产生大量输出信号,从而增加了后端事件计时器的负担。因此,下一步笔者等将研究数据快速采集和处理新方法以及对输入信号进行噪声滤波处理的方法。

参考文献 (15)

目录

    /

    返回文章
    返回