留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米金刚石和氧化锌纳米线的协同效应提高紫外光电响应

蒋海涛 刘诗斌 元倩倩

蒋海涛, 刘诗斌, 元倩倩. 纳米金刚石和氧化锌纳米线的协同效应提高紫外光电响应[J]. 红外与激光工程, 2019, 48(1): 120004-0120004(8). doi: 10.3788/IRLA201948.0120004
引用本文: 蒋海涛, 刘诗斌, 元倩倩. 纳米金刚石和氧化锌纳米线的协同效应提高紫外光电响应[J]. 红外与激光工程, 2019, 48(1): 120004-0120004(8). doi: 10.3788/IRLA201948.0120004
Jiang Haitao, Liu Shibin, Yuan Qianqian. Synergistic effect of hybrid nanodiamond/ZnO nanowires for improved ultraviolet photoresponse[J]. Infrared and Laser Engineering, 2019, 48(1): 120004-0120004(8). doi: 10.3788/IRLA201948.0120004
Citation: Jiang Haitao, Liu Shibin, Yuan Qianqian. Synergistic effect of hybrid nanodiamond/ZnO nanowires for improved ultraviolet photoresponse[J]. Infrared and Laser Engineering, 2019, 48(1): 120004-0120004(8). doi: 10.3788/IRLA201948.0120004

纳米金刚石和氧化锌纳米线的协同效应提高紫外光电响应

doi: 10.3788/IRLA201948.0120004
基金项目: 

国家自然科学基金(61605207);河南省科技攻关项目基金(182102210419)

详细信息
    作者简介:

    蒋海涛(1978-),男,副教授,博士,主要从事微电子器件和微传感器方面的研究。Email:jzchaonan@163.com

    通讯作者: 刘诗斌(1960-),男,教授,博士,主要从事智能传感器系统和微电子器件与微传感器方面的研究。Email:liushibin@nwpu.edu.cn
  • 中图分类号: TN304.9;O472+4

Synergistic effect of hybrid nanodiamond/ZnO nanowires for improved ultraviolet photoresponse

  • 摘要: 氧化锌基紫外光电探测器较小的开关比和长的响应时间,制约其在紫外检测中的实际应用。一种简易制备纳米金刚石修饰氧化锌纳米线紫外光电探测器的方法,纳米金刚石和氧化锌纳米线混合物光电探测器的光电性能比氧化锌光电探测器有明显的提升:快的响应时间和好的开关比;优异的光电性能得益于纳米金刚石和纳米线之间的协同效应。这种策略为设计和制备新型光电系统提供了一种可能。
  • [1] Patel M, Kim H, Kim J. All transparent metal oxide ultraviolet photodetector[J]. Advanced Electronic Materials, 2016, 1(11):1500232.
    [2] Zhai T, Fang X, Liao M, et al. A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors[J]. Sensors, 2009, 9(8):6504.
    [3] Wang C, Yin L, Zhang L, et al. Metal oxide gas sensors:sensitivity and influencing factors[J]. Sensors, 2010, 10(3):2088.
    [4] Liao X, Yan X, Lin P, et al. Enhanced performance of ZnO piezotronic pressure sensor through electron-tunneling modulation of MgO nanolayer[J]. Acs Appl Mater Interfaces, 2015, 7(3):1602-1607.
    [5] Fulati A, Ali S M U, Riaz M, et al. Miniaturized pH sensors based on zinc oxide nano-tubes/nanorods[J]. Sensors, 2009, 9(11):8911-8923.
    [6] Wan Q, Li Q H, Chen Y J, et al. Positive temperature coefficient resistance and humidity sens-ing properties of Cd-doped ZnO nanowires[J]. Applied Physics Letters, 2004, 84(16):3085-3087.
    [7] Minami T. Transparent conducting oxide semiconductors for transparent electrodes[J]. Semi-conductor Science Technology, 2005, 20(4):S35.
    [8] Lang X, Hirata A, Fujita T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[J]. Nature Nanotechnology, 2011, 6(4):232.
    [9] Zhan Z Y, Xu C Y, Zhen L, et al. Large-scale synthesis of single-crystalline KNbO nanobelts via a simple molten salt method[J]. Ceramics International, 2010, 36(2):679-682.
    [10] Zhan Z, An J, Zhang H, et al. Three-dimensional plasmonic photoanodes based on Au-embedded TiO2 structures for enhanced visible-light water splitting[J]. Acs Appl Mater Inter-Faces, 2014, 6(2):1139-1144.
    [11] Kim K, Kim G, Lee B R, et al. High-resolution electro hydrodynamic jet printing of small-molecule organic light-emitting diodes[J]. Nanoscale, 2015, 7(32):13410.
    [12] Kim S Y, Kim K, Hwang Y H, et al. High-resolution electro hydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance[J]. Nanoscale, 2016, 39(8):17113-17121.
    [13] Kim M, Park J, Ji S, et al. Fully-integrated, bezel-less transistor arrays using reversibly foldable interconnects and stretchable origami substrates[J]. Nanoscale, 2016, 8(18):9504-9510.
    [14] Chen H, Liu H, Zhang Z, et al. Nanostructured photodetectors:from ultraviolet to terahertz[J]. Advanced Materials, 2016, 28(3):403.
    [15] Tran V T, Wei Y, Yang H, et al. All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device[J]. Nanotechnology, 2017, 28(9):095204.
    [16] Zhan Z, An J, Wei Y, et al. Inkjet-printed optoelectronics[J]. Nanoscale, 2016, 9(3):965-993.
    [17] Teng F, Zheng L, Hu K, et al. Surface oxide thin layer of copper nanowires enhanced UV selective response of ZnO film photodetector[J]. Journal of Materials Chemistry C, 2016, 4(36):02901A.
    [18] Chen M, Hu L, Xu J, et al. ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector[J]. Small, 2011, 7(17):2449-2453.
    [19] Galloro J, Ginzburg M, Mguez H, et al. Replicating the structure of a cross linked polyferrocenylsilane inverse opal in the form of a magnetic ceramic[J]. Advanced Functional Materials, 2002, 12(5):382-388.
    [20] Retamal J R D, Chen C Y, Lien D H, et al. Concurrent improvement in photogain and speed of a metal oxide nanowire photodetector through enhancing surface band bending via incorporating a nanoscale heterojunction[J]. Acs Photonics, 2014, 1(4):354-359.
    [21] Liu X, Gu L, Zhang Q, et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity[J]. Nature Communications, 2014, 5(4007):4007.
    [22] Nasiri N, Bo R, Chen H, et al. Structural engineering of nano-grain boundaries for low-voltage UV-photodetectors with gigantic photo-to dark-current ratios[J]. Advanced Optical Materials, 2016, 4(11):1787-1795.
    [23] Monroy E, Omns F, Calle F. Wide-bandgap semiconductor ultraviolet photodetectors[J]. Semiconductor Science Technology, 2003, 18(4):R33.
    [24] Fang X, Bando Y, Liao M, et al. Ultraviolet sensors:an efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability[J]. Advanced Functional Materials, 2010, 20(3):500-508.
    [25] Ding L, Liu N, Li L, et al. Graphene-skeleton heat-coordinated and nanoamorphous-surface-state controlled pseudo-negative-photoconductivity of tiny SnO2 nano-particles[J]. Advanced Materials, 2015, 27(23):3525-3532.
    [26] Li X, Gao C, Duan H, et al. High-performance photoelectrochemical-type self-powered UV photodetector using epitaxial TiO2/SnO2 branched heterojunction nanostructure[J]. Small, 2013, 9(11):2005.
    [27] Xie Y, Wei L, Wei G, et al. A self-powered UV photodetector based on TiO2 nanorod arrays[J]. Nanoscale Research Letters, 2013, 8(1):1-6.
    [28] Fang X, Hu L, Huo K, et al. New ultraviolet photodetector based on individual Nb2O5 nanobelts[J]. Advanced Functional Materials, 2011, 21(20):3907-3915.
    [29] Liu H, Zhang Z, Hu L, et al. New UV-A photodetector based on individual potassium niobate nanowires with high performance[J]. Advanced Optical Materials, 2015, 2(8):771-778.
    [30] Zhou J, Gu Y, Hu Y, et al. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization[J]. Applied Physics Letters, 2009, 94(19):191103.
    [31] Cheng G, Wu X, Liu B, et al. ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed[J]. Applied Physics Letters, 2011, 99(20):203105.
    [32] Lu J, Xu C, Dai J, et al. Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles[J]. Nanoscale, 2015, 7(8):3396-3403.
    [33] Fu X W, Liao Z M, Xu J, et al. Improvement of ultraviolet photoresponse of bent ZnO microwires by coupling piezoelectric and surface oxygen adsorption/desorption effects.[J]. Nanoscale, 2013, 5(3):916-920.
    [34] He P, Feng S, Liu S, et al. Ultrafast UV response detectors based on multi-channel ZnO nan-owire networks[J]. Rsc Advances, 2015, 5(127):105288-105291.
    [35] Liu J, Lu R, Xu G, et al. Development of a seedless floating growth process in solution for synthesis of crystalline ZnO micro/nanowire arrays on graphene:towards high-performance nanohybrid ultraviolet photodetectors[J]. Advanced Functional Materials, 2013, 23(39):4941-4948.
    [36] Zhan Z, An J, Zhang H, et al. Three-dimensional plasmonic photoanodes based on Au-embedded TiO2 structures for enhanced visible-light water splitting[J]. Acs Appl Mater Interfaces, 2014, 6(2):1139-1144.
    [37] Liu K, Sakurai M, Liao M, et al. Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles[J]. Journal of Physical Chemistry C, 2010, 114(114):19835-19839.
    [38] Zhan Z, Liu L, Wang W, et al. Ultrahigh surface-enhanced raman scattering of graphene from Au/Graphene/Au sandwiched structures with subnanometer gap[J]. Advanced Optical Materials, 2016, 4(12):2021-2027.
    [39] Nasiri N, Bo R, Fu L, et al. Three-dimensional nano-heterojunction networks:a highly per-forming structure for fast visible-blind UV photodetectors[J]. Nanoscale, 2017, 9(5):2059.
    [40] Chen C Y, Chen M W, Hsu C Y, et al. Enhanced recovery speed of nanostructured ZnO photodetectors using nanobelt networks[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(6):1807-1811.
    [41] Zheng Q, Huang J, Yang H, et al. A high-performance nanobridged MoO3 UV photodetector based on nanojunctions with switching characteristics[J]. Nanotechnology, 2017, 28(4):045202.
    [42] Huang M H, Wu Y, Feick H, et al. Catalytic growth of zinc oxide nanowires by vapor transport[J]. Advanced Materials, 2001, 13(2):113-116.
    [43] Sankaran K J, Kalpataru P, Balakrishnan S, et al. Catalytically induced nanographitic phase by a plati-num-ion implantation/annealing process to improve the field electron emission properties of ultrananocrystalline diamond films[J]. J Mater Chem C, 2015, 3(11):2632-2641.
    [44] Lin Z, Xiao J, Li L, et al. Nanodiamond-embedded p-type copper (I) oxide nanocrystals for broad-spectrum photocatalytic hydrogen evolution[J]. Adv Energy Mater, 2016, 6:1501865.
    [45] Xiao J, Liu P, Li L, et al. Fluorescence origin of nanodiamonds[J]. J Phys Chem C, 2015, 119(4):2239-2248.
    [46] Zhou X, Gan L, Tian W, et al. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors[J]. Adv Mater, 2015, 27(48):8035-8041.
    [47] Hu X, Zhang X, Liang L, Bao J, et al. High-performance flexible broadband photodetector based on organo lead halide perovskite[J]. Adv Funct Mater, 2014, 24(46):7373-7380.
    [48] Island J O, Blanter S I, Buscema M, et al. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors[J]. Nano Letters, 2015, 15(12):7853-7858.
  • [1] 吴茴, 彭嘉隆, 江金豹, 李晗升, 徐威, 郭楚才, 张检发, 朱志宏.  等离子体增强型ZnO基纳米线异质结阵列光电探测器 . 红外与激光工程, 2024, 53(3): 20240006-1-20240006-9. doi: 10.3788/IRLA20240006
    [2] 郭思彤, 邱开放, 王文艳, 李国辉, 翟爱平, 潘登, 冀婷, 崔艳霞.  Au/TiO2复合纳米结构增强热电子光电探测器宽谱响应性能 . 红外与激光工程, 2023, 52(3): 20220464-1-20220464-11. doi: 10.3788/IRLA20220464
    [3] 刘春阳, 盛羽杰, 佟金阳, 卢星桥, 于长明, 母一宁, 汪学文.  基于量子点和纳米线复合体系的低维柔性光发射器件 . 红外与激光工程, 2023, 52(10): 20230433-1-20230433-10. doi: 10.3788/IRLA20230433
    [4] 金舵, 白振旭, 范文强, 齐瑶瑶, 丁洁, 颜秉政, 王雨雷, 吕志伟.  金刚石布里渊激光器实现4倍线宽窄化 . 红外与激光工程, 2023, 52(8): 20230295-1-20230295-4. doi: 10.3788/IRLA20230295
    [5] 张亚凯, 陈晖, 白振岙, 庞亚军, 王雨雷, 吕志伟, 白振旭.  多波长红光金刚石拉曼激光器 . 红外与激光工程, 2023, 52(8): 20230329-1-20230329-7. doi: 10.3788/IRLA20230329
    [6] 白振旭, 陈晖, 蔡云鹏, 丁洁, 齐瑶瑶, 颜秉政, 崔璨, 王雨雷, 吕志伟.  金刚石拉曼振荡器实现级联布里渊激光输出 . 红外与激光工程, 2022, 51(11): 20220660-1-20220660-2. doi: 10.3788/IRLA20220660
    [7] 李牧野, 杨学宗, 孙玉祥, 白振旭, 冯衍.  单频连续波金刚石拉曼激光器研究进展(特邀) . 红外与激光工程, 2022, 51(6): 20210970-1-20210970-11. doi: 10.3788/IRLA20210970
    [8] Fan Yu, Yuan Qianqian, Jiang Haitao.  Fabrication of low Mg content MgxZn1-xO nanowires ultraviolet photosensors via chemical vapour deposition method . 红外与激光工程, 2021, 50(9): 20200448-1-20200448-7. doi: 10.3788/IRLA20200448
    [9] 白振旭, 陈晖, 张展鹏, 王坤, 丁洁, 齐瑶瑶, 颜秉政, 李森森, 闫秀生, 王雨雷, 吕志伟.  百瓦级1.2/1.5 μm双波长金刚石拉曼激光器(特邀) . 红外与激光工程, 2021, 50(12): 20210685-1-20210685-7. doi: 10.3788/IRLA20210685
    [10] 何伟迪, 苏丹, 王善江, 周桓立, 陈雯, 张晓阳, 赵宁, 张彤.  表面等离激元纳米结构增效的光电探测器进展(特邀) . 红外与激光工程, 2021, 50(1): 20211014-1-20211014-12. doi: 10.3788/IRLA20211014
    [11] 郭亚楠, 刘东, 苗成成, 孙嘉敏, 杨再兴.  半导体纳米线红外探测研究进展(特邀) . 红外与激光工程, 2021, 50(1): 20211010-1-20211010-13. doi: 10.3788/IRLA20211010
    [12] 王朋, 薛栋柏, 张昊, 杨坤, 李伟皓, 回长顺.  红外晶体等距恒速单点金刚石车削 . 红外与激光工程, 2019, 48(7): 742001-0742001(5). doi: 10.3788/IRLA201948.0742001
    [13] 程勇, 陆益敏, 黄国俊, 米朝伟, 黎伟, 田方涛, 王赛.  磁场辅助激光沉积类金刚石膜初探 . 红外与激光工程, 2019, 48(11): 1117002-1117002(5). doi: 10.3788/IRLA201948.1117002
    [14] 杨智, 汪敏强, 张妙, 窦金娟.  全无机钙钛矿纳米晶薄膜光电探测器 . 红外与激光工程, 2018, 47(9): 920007-0920007(6). doi: 10.3788/IRLA201847.0920007
    [15] 尤立星.  超导纳米线单光子探测现状与展望 . 红外与激光工程, 2018, 47(12): 1202001-1202001(6). doi: 10.3788/IRLA201847.1202001
    [16] 蒋海涛, 刘诗斌, 元倩倩.  无催化剂气相沉积法直接制备用于紫外光检测的氧化锌纳米线网 . 红外与激光工程, 2018, 47(11): 1121002-1121002(8). doi: 10.3788/IRLA201847.1121002
    [17] 陈刚, 李墨, 吕衍秋, 朱旭波, 曹先存.  分子束外延InAlSb红外探测器光电性能的温度效应 . 红外与激光工程, 2017, 46(12): 1204003-1204003(5). doi: 10.3788/IRLA201746.1204003
    [18] 张圣斌, 左敦稳, 卢文壮.  金刚石衬底的氧化钒薄膜光电特性研究 . 红外与激光工程, 2016, 45(12): 1221001-1221001(8). doi: 10.3788/IRLA201645.1221001
    [19] 秦静, 郑婵.  石墨烯-Au纳米复合体系的构筑及其光限幅效应 . 红外与激光工程, 2015, 44(9): 2757-2760.
    [20] 于盛旺, 安康, 李晓静, 申艳艳, 宁来元, 贺志勇, 唐宾, 唐伟忠.  高功率MPCVD金刚石膜红外光学材料制备 . 红外与激光工程, 2013, 42(4): 971-974.
  • 加载中
计量
  • 文章访问数:  487
  • HTML全文浏览量:  57
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-11
  • 修回日期:  2018-09-17
  • 刊出日期:  2019-01-25

纳米金刚石和氧化锌纳米线的协同效应提高紫外光电响应

doi: 10.3788/IRLA201948.0120004
    作者简介:

    蒋海涛(1978-),男,副教授,博士,主要从事微电子器件和微传感器方面的研究。Email:jzchaonan@163.com

    通讯作者: 刘诗斌(1960-),男,教授,博士,主要从事智能传感器系统和微电子器件与微传感器方面的研究。Email:liushibin@nwpu.edu.cn
基金项目:

国家自然科学基金(61605207);河南省科技攻关项目基金(182102210419)

  • 中图分类号: TN304.9;O472+4

摘要: 氧化锌基紫外光电探测器较小的开关比和长的响应时间,制约其在紫外检测中的实际应用。一种简易制备纳米金刚石修饰氧化锌纳米线紫外光电探测器的方法,纳米金刚石和氧化锌纳米线混合物光电探测器的光电性能比氧化锌光电探测器有明显的提升:快的响应时间和好的开关比;优异的光电性能得益于纳米金刚石和纳米线之间的协同效应。这种策略为设计和制备新型光电系统提供了一种可能。

English Abstract

参考文献 (48)

目录

    /

    返回文章
    返回