留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超短脉冲激光微孔加工(下)——实验探索

赵万芹 梅雪松 王文君

赵万芹, 梅雪松, 王文君. 超短脉冲激光微孔加工(下)——实验探索[J]. 红外与激光工程, 2019, 48(2): 242001-0242001(12). doi: 10.3788/IRLA201948.0242001
引用本文: 赵万芹, 梅雪松, 王文君. 超短脉冲激光微孔加工(下)——实验探索[J]. 红外与激光工程, 2019, 48(2): 242001-0242001(12). doi: 10.3788/IRLA201948.0242001
Zhao Wanqin, Mei Xuesong, Wang Wenjun. Ultrashort pulse laser drilling of micro-holes(part 2) -experimental study[J]. Infrared and Laser Engineering, 2019, 48(2): 242001-0242001(12). doi: 10.3788/IRLA201948.0242001
Citation: Zhao Wanqin, Mei Xuesong, Wang Wenjun. Ultrashort pulse laser drilling of micro-holes(part 2) -experimental study[J]. Infrared and Laser Engineering, 2019, 48(2): 242001-0242001(12). doi: 10.3788/IRLA201948.0242001

超短脉冲激光微孔加工(下)——实验探索

doi: 10.3788/IRLA201948.0242001
基金项目: 

国家重点研发计划项目(2017YFB1104602);长江学者和创新团队发展计划项目(IRT_15R54)

详细信息
    作者简介:

    赵万芹(1983-),女,讲师,博士,主要从事超短脉冲激光微纳精密制造方面的研究。Email:linazhaolinazhao@foxmail.com

  • 中图分类号: TN249

Ultrashort pulse laser drilling of micro-holes(part 2) -experimental study

  • 摘要: 自20世纪60年代激光器被发明以来,其脉冲宽度被不断压缩至亚皮秒及飞秒量级,使得激光加工技术进入到了超短脉冲阶段。与其它加工技术相比,超短脉冲激光微孔加工突破了对尺度和材料的限制,并具有高精度和自动化等优点。主要论述了超短脉冲激光微孔加工的优势,如冷加工、突破衍射极限的低微米及纳米量级的加工等。介绍了超短脉冲激光微孔加工中的三个经典模型,包括孔径和阈值关系模型、多脉冲累积模型和单脉冲烧蚀深度模型。简述了超短脉冲激光微孔加工的实验研究现状,并给出了存在的问题和展望。
  • [1] Zhang G T. Study on LiF:F_2~-crystal Q-switch characteristics[J]. Laser Journal, 1987, 8(6):358-361.
    [2] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 1969, 187(4736):134-136.
    [3] Fork R L, Greene B I, Shank C V. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode-locking[J]. Applied Physics Letters, 1981, 38(9):671-672.
    [4] Hentschel M, Kienberger R, Spielmann C, et al. Attosecond metrology[J]. Nature, 2001, 414(6863):509-513.
    [5] Yang Jing, Gong Cheng, Zhao Jiayu, et al. Fabrication of terahertz device by 3D printing technology[J]. Chinese Optics, 2017, 10(1):77-85. (in Chinese)
    [6] Zhang Junzhan, Wang Yuqian, Zhang Ying, et al. Effect of feeding speed on micro-hole drilling in TiC ceramic by femtosecond laser[J]. Optics and Precision Engineering, 2015, 23(6):1565-1571. (in Chinese)
    [7] Wang Yanfang, Li Hao, Shi Zhiqiang, et al. Laser cladding Fe-based solid solution alloy coating with high corrosion resistance[J]. Infrared and Laser Engineering, 2017, 1(8):0806001. (in Chinese)
    [8] Zhang Y, Wang Y, Zhang J, et al. Micromachining features of TiC ceramic by femtosecond pulsed laser[J]. Ceramics International, 2015, 41(5):6525-6533.
    [9] Luzius S, Sailer M, Siebert C, et al. PCB drilling with high power picosecond lasers[J]. Physics Procedia, 2013, 41:723-726.
    [10] Fann W S, Storz R, Tom H W, et al. Electron thermalization in gold[J]. Physical Review B Condensed Matter, 1992, 46(20):13592.
    [11] Wellershoff S S, Hohlfeld J, Gdde J, et al. The role of electron-phonon coupling in femtosecond laser damage of metals[J]. Applied Physics A, 1999, 69(1):S99-S107.
    [12] Kojisugioka, Ya Cheng. Ultrafast Laser Processing:From Micro-to Nanoscale[M]. Singapore:Pan Stanford Pub, 2013:225-261.
    [13] Corkum P B, Brunel F, Sherman N K, et al. Thermal response of metals to ultrashort-pulse laser excitation[J]. Physical Review Letters, 1988, 61(25):2886.
    [14] Breitling D, Dausinger F H. Precise drilling of steel with ultrashort pulsed solid state lasers[C]//Laser Processing of Advanced Materials and Laser Microtechnologies, 2003:271-279.
    [15] Wang Xinlin. Femtosecond laser ablation of metallic materials and fabrication of micro-components[D]. Wuhan:Huazhong University of Science and Technology, 2007. (in Chinese)
    [16] Liu J M. Simple technique for measurements of pulsed Gaussian-beam spot sizes[J]. Optics Letters, 1982, 7(5):196.
    [17] Yong J, Becker M F, Walser R M. Laser-induced damage on single-crystal metal surfaces[J]. Journal of the Optical Society of America B, 1988, 5(3):648-659.
    [18] Raciukaitis G, Gedvilas M. Accumulation effects in laser ablation of metals with high-repetition-rate lasers[C]//SPIE, 2008, 7005:70052L.
    [19] Nolte S, Momma C, Jacobs H, et al. Ablation of metals by ultrashort laser pulses[J]. Journal of the Optical Society of America B Optical Physics, 1997, 14(10):2716-2722.
    [20] Ashkenasi D, Rosenfeld A, Varel H, et al. Laser processing of sapphire with picosecond and sub-picosecond pulses[J]. Applied Surface Science, 1997, 120(1-2):65-80.
    [21] Klein-Wiele J H, Bekesi J, Simon P. Sub-micron patterning of solid materials with ultraviolet femtosecond pulses[J]. Applied Physics A, 2004, 79(4-6):775-778.
    [22] Zang Zhigang, Zeng Xiaofeng, Du Jihe, et al. Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes[J]. Optics Letters, 2016, 41(15):3463.
    [23] Leitz K H, Redlingshfer B, Reg Y, et al. Metal ablation with short and ultrashort laser pulses[J]. Physics Procedia, 2011, 12(1):230-238.
    [24] Dausinger F, Lichtner F, Lubatschowski H. Femtosecond Technical and Medical Applications[M]. Berlin:Springer, 2004.
    [25] Dausinger F. Precise drilling with short-pulsed lasers[C]//SPIE, 2000, 3888:180-187.
    [26] Kononenko T V, Klimentov S M, Konov V I, et al. Propagation of short-pulsed laser radiation and stages of ablative deep-channel formation[C]//SPIE, 2001, 4274(4274):248.
    [27] Kononenko T V, Konov V I, Garnov S V, et al. Dynamics of deep short pulse laser drilling:ablative stages and light propagation[J]. Laser Physics, 2001, 11(3):343.
    [28] Garnov S V, Breitling D, Dausinger F. Hole formation process in laser deep drilling with short and ultrashort pulses[C]//SPIE, 2002, 4426(4426):108.
    [29] Dring S, Richter S, Nolte S, et al. In-situ observation of the hole formation during deep drilling with ultrashort laser pulses[C]//SPIE, 2011, 7925(1):330-338.
    [30] Zhao W, Wang W, Jiang G, et al. Ablation and morphological evolution of micro-holes in stainless steel with picosecond laser pulses[J]. International Journal of Advanced Manufacturing Technology, 2015, 80(9-12):1713-1720.
    [31] Zhao Wanqin. Studies on technologies and applications in micro-hole percussion drilling of picosecond ultrashort pulse laser of metals[D]. Xi'an:Xi'an Jiaotong University, 2016. (in Chinese)
    [32] Dring S, Richter S, Ullsperger T, et al. Influence of ambient pressure on the hole formation process in ultrashort pulse laser deep drilling[C]//SPIE LASE, 2013, 8611:86111D.
    [33] Dring S, Richter S, Nolte S, et al. In situ imaging of hole shape evolution in ultrashort pulse laser drilling[J]. Optics Express, 2010, 18(19):20395-20400.
    [34] Dring S, Richter S, Tnnermann A, et al. Evolution of hole depth and shape in ultrashort pulse deep drilling in silicon[J]. Applied Physics A, 2011, 105(1):69-74.
    [35] Xia Bo. Mechanism and online observation of high-aspect-ratio, high-quality microholes drilling with femtosecond laser[D]. Beijing:Beijing Institute of Technology, 2016. (in Chinese)
    [36] Kaakkunen J J J, Silvennoinen M, Paivasaari K, et al. Water-assisted femtosecond laser pulse ablation of high aspect ratio holes[J]. Physics Procedia, 2011, 12(1):89-93.
    [37] Hidai H, Kuroki Y, Matsusaka S, et al. Curved drilling via inner hole laser reflection[J]. Precision Engineering, 2016, 46:96-103.
    [38] Lin C H, Rao Z H, Jiang L, et al. Investigations of femtosecond-nanosecond dual-beam laser ablation of dielectrics[J]. Optics Letters, 2010, 35(14):2490-2492.
    [39] Lin C H, Rao Z H, Jiang L, et al. Enhancement of ablation efficiency by a femto/nano-second dual-beam micromachining system[C]//SPIE LASE, 2010:7585.
    [40] Sugioka K, Midorikawa K. VUV-UV multiwavelength excitation process for high-quality ablation of fused silica[C]//SPIE, 2013, 8777:04.
    [41] Tan B, Venkatkrishnan K, Sivakumar N R, et al. Laser drilling of thick material using femtosecond pulse with a focus of dual-frequency beam[J]. Optics Laser Technology, 2003, 35(3):199-202.
    [42] Kamata M, Tsujikawa S, Sumiyoshi T, et al. Dual wavelength femtosecond laser materials processing[C]//Lasers and Electro-Optics, CLEO 2007, 2007:1-2.
    [43] Zoppel S, Zehetner J, Reider G A. Two color laser ablation:Enhanced yield, improved machining[J]. Applied Surface Science, 2007, 253(19):7692-7695.
    [44] Zhao W, Wang W, Mei X, et al. Investigations of morphological features of picosecond dual-wavelength laser ablation of stainless steel[J]. Optics Laser Technology, 2014, 58(6):94-99.
    [45] Forsman A C, Banks P S, Perry M D, et al. Doublepulse machining as a techniques for the enhancement of material removal rates in laser machining of metals[J]. Journal of Applied Physics, 2005, 98(3):474-477.
    [46] Jiang L, Tsai H L. Modeling of ultrashort laser pulse-train processing of metal thin films[J]. International Journal of Heat Mass Transfer, 2007, 50(17-18):3461-3470.
    [47] Huang H, Yang L M, Liu J. Micro-hole drilling with femtosecond fiber laser[C]//SPIE, 2013, 8607:86070K.
    [48] Nebel A, Herrmann T, Henrich B, et al. Fast micromachining using picosecond lasers[C]//SPIE, 2005:5706.
    [49] Kling R, Mottay E. Metal microdrilling combining high power femtosecond laser and trepanning head[C]//SPIE, 2013, 8608:86080F.
    [50] Lee H M, Choi J H, Moon S J. Determining the machining parameters for femtosecond laser helical drilling of aluminosilicate glass substrate[J]. International Journal of Precision Engineering Manufacturing, 2017, 18(7):923-930.
    [51] Romoli L, Vallini R. Experimental study on the development of a micro-drilling cycle using ultrashort laser pulses[J]. Optics Lasers in Engineering, 2016, 78:121-131.
    [52] Zhang H, Di J, Ming Z, et al. An investigation on the hole quality during picosecond laser helical drilling of stainless steel 304[J]. Applied Physics A, 2015, 119(2):1-8.
    [53] Breitling D, Dausinger F. Fundamental aspects in machining of metals with short and ultrashort laser pulses[C]//SPIE, 2004, 5339:49-63.
    [54] Knappe R, Weis A, Nebel A. Scaling ablation rates for picosecond lasers using burst micromachining[C]//SPIE, 2010, 7585:75850H.
    [55] Klimt B. Micromachining with industrial picosecond lasers[J]. Laser Technik Journal, 2007, 4(1):40-43.
    [56] Weck A, Crawford T H R, Wilkinson D S, et al. Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses[J]. Applied Physics A, 2008, 90(3):537-543.
    [57] Ancona A, Rser F, Limpert J, et al. Ultrashort pulse laser drilling of metals using a high-repetition rate high average power fiber CPA system[C]//SPIE, 2009, 7203:720311.
  • [1] 周伟静, 文明, 常浩, 陈一夫, 姬刚, 马英杰, 简智龙, 廖雨杰.  皮秒脉冲激光辐照太阳能电池损伤特性实验研究(特邀) . 红外与激光工程, 2023, 52(2): 20210870-1-20210870-10. doi: 10.3788/IRLA20210870
    [2] 张逸文, 蔡宇, 苑莉薪, 胡明列.  基于循环神经网络的超短脉冲光纤放大器模型(特邀) . 红外与激光工程, 2022, 51(1): 20210857-1-20210857-7. doi: 10.3788/IRLA20210857
    [3] 高德辛, 吕昶见, 吕东明, 于旺, 秦伟平.  面向超短脉冲激光器泵浦源的驱动系统设计及应用 . 红外与激光工程, 2022, 51(4): 20210153-1-20210153-10. doi: 10.3788/IRLA20210153
    [4] 周国清, 谭逸之, 周祥, 李伟豪, 李先行, 林港超, 胡皓程, 张烈平, 农学勤, 杨家志.  波长1 064 nm和532 nm脉冲激光大动态范围能量的测试方法及实验 . 红外与激光工程, 2021, 50(S2): 20200417-1-20200417-8. doi: 10.3788/IRLA20200417
    [5] 洪捐, 蒯源, 程鹍, 张泽新, 钱峰, 钱俊, 陈如龙, 沈鸿烈.  硼掺杂纳米硅薄膜的多脉冲激光熔覆数值模拟及实验研究 . 红外与激光工程, 2021, 50(10): 20210023-1-20210023-10. doi: 10.3788/IRLA20210023
    [6] 岳端木, 孙会来, 杨雪, 孙建林.  飞秒激光环切加工不锈钢微孔工艺及其质量控制神经网络模型 . 红外与激光工程, 2021, 50(10): 20200446-1-20200446-10. doi: 10.3788/IRLA20200446
    [7] 沈振民, 赵彤, 王云才, 郑永超, 尚卫东, 王冰洁, 李静霞.  混沌脉冲激光雷达水下目标探测 . 红外与激光工程, 2019, 48(4): 406004-0406004(7). doi: 10.3788/IRLA201948.0406004
    [8] 赵万芹, 梅雪松, 王文君.  超短脉冲激光微孔加工(上)——理论研究 . 红外与激光工程, 2019, 48(1): 106008-0106008(9). doi: 10.3788/IRLA201948.0106008
    [9] 何广龙, 徐莉, 金亮, 马晓辉, 吴国盛, 隋庆学, 张志敏.  双SESAM被动锁模超短脉冲光纤激光器 . 红外与激光工程, 2018, 47(5): 505002-0505002(6). doi: 10.3788/IRLA201847.0505002
    [10] 魏朕, 沈娜, 张祥金.  532 nm激光在雨中传输衰减模型的改进及实验 . 红外与激光工程, 2018, 47(11): 1106004-1106004(8). doi: 10.3788/IRLA201847.1106004
    [11] 粟荣涛, 周朴, 张鹏飞, 王小林, 马阎星, 马鹏飞.  超短脉冲光纤激光相干合成(特邀) . 红外与激光工程, 2018, 47(1): 103001-0103001(19). doi: 10.3788/IRLA201847.0103001
    [12] 金星, 常浩, 叶继飞.  超短脉冲激光烧蚀冲量耦合测量方法 . 红外与激光工程, 2017, 46(3): 329002-0329002(7). doi: 10.3788/IRLA201746.0329002
    [13] 吴常顺, 冯国英, 刘彩飞.  脉冲激光对单晶硅打孔的研究 . 红外与激光工程, 2016, 45(2): 206007-0206007(6). doi: 10.3788/IRLA201645.0206007
    [14] 武伟, 陈桂明, 赵娜, 樊博璇.  激光在高速钢表面加工沟槽表面织构的实验研究 . 红外与激光工程, 2016, 45(2): 206008-0206008(8). doi: 10.3788/IRLA201645.0206008
    [15] 孙俊灵, 马鹏阁, 孙光民, 金秋春, 羊毅.  基于目标波形模型的多脉冲激光雷达目标信号模拟 . 红外与激光工程, 2016, 45(7): 726006-0726006(7). doi: 10.3788/IRLA201645.0726006
    [16] 董志伟, 张伟斌, 郑立威, 姜涛, 范国祥, 赵煦, 赵清亮, 陈德应, 夏元钦.  利用飞秒激光和纳秒激光脉冲加工金刚石 . 红外与激光工程, 2015, 44(3): 893-896.
    [17] 康文运, 宋小全, 张颖新, 韦震.  推扫相机激光干扰等效缩比模型研究及实验验证 . 红外与激光工程, 2015, 44(9): 2649-2654.
    [18] 田秀芹, 肖思, 陶少华, 袁战忠, 周炎强.  飞秒超短脉冲激光对硅太阳能电池的损伤阈值研究 . 红外与激光工程, 2014, 43(3): 676-680.
    [19] 杨利红, 王涛, 韩锦涛, 苏俊宏.  脉冲激光诱导TiO2/SiO2薄膜表面损伤性能实验 . 红外与激光工程, 2014, 43(2): 365-368.
    [20] 邱冬冬, 王睿, 程湘爱, 张震, 江天.  超短脉冲激光对单晶硅太阳能电池的损伤效应 . 红外与激光工程, 2012, 41(1): 112-115.
  • 加载中
计量
  • 文章访问数:  684
  • HTML全文浏览量:  174
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-05
  • 修回日期:  2018-10-03
  • 刊出日期:  2019-02-25

超短脉冲激光微孔加工(下)——实验探索

doi: 10.3788/IRLA201948.0242001
    作者简介:

    赵万芹(1983-),女,讲师,博士,主要从事超短脉冲激光微纳精密制造方面的研究。Email:linazhaolinazhao@foxmail.com

基金项目:

国家重点研发计划项目(2017YFB1104602);长江学者和创新团队发展计划项目(IRT_15R54)

  • 中图分类号: TN249

摘要: 自20世纪60年代激光器被发明以来,其脉冲宽度被不断压缩至亚皮秒及飞秒量级,使得激光加工技术进入到了超短脉冲阶段。与其它加工技术相比,超短脉冲激光微孔加工突破了对尺度和材料的限制,并具有高精度和自动化等优点。主要论述了超短脉冲激光微孔加工的优势,如冷加工、突破衍射极限的低微米及纳米量级的加工等。介绍了超短脉冲激光微孔加工中的三个经典模型,包括孔径和阈值关系模型、多脉冲累积模型和单脉冲烧蚀深度模型。简述了超短脉冲激光微孔加工的实验研究现状,并给出了存在的问题和展望。

English Abstract

参考文献 (57)

目录

    /

    返回文章
    返回