留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高通量快速傅里叶叠层显微成像技术研究进展

潘安 姚保利

潘安, 姚保利. 高通量快速傅里叶叠层显微成像技术研究进展[J]. 红外与激光工程, 2019, 48(6): 603012-0603012(19). doi: 10.3788/IRLA201948.0603012
引用本文: 潘安, 姚保利. 高通量快速傅里叶叠层显微成像技术研究进展[J]. 红外与激光工程, 2019, 48(6): 603012-0603012(19). doi: 10.3788/IRLA201948.0603012
Pan An, Yao Baoli. High-throughput and fast-speed Fourier ptychographic microscopy:A review[J]. Infrared and Laser Engineering, 2019, 48(6): 603012-0603012(19). doi: 10.3788/IRLA201948.0603012
Citation: Pan An, Yao Baoli. High-throughput and fast-speed Fourier ptychographic microscopy:A review[J]. Infrared and Laser Engineering, 2019, 48(6): 603012-0603012(19). doi: 10.3788/IRLA201948.0603012

高通量快速傅里叶叠层显微成像技术研究进展

doi: 10.3788/IRLA201948.0603012
基金项目: 

国家自然科学基金(61377008,81427802)

详细信息
    作者简介:

    潘安(1993-),男,博士生,主要从事定量相位成像和计算光学显微成像方面的研究。Email:panan@opt.cn

  • 中图分类号: TN911.74

High-throughput and fast-speed Fourier ptychographic microscopy:A review

  • 摘要: 傅里叶叠层显微术(Fourier ptychographic microscopy,FPM)是一极具前景的计算成像技术,它具有高分辨率、大视场、无标记和定量相位等优势。由于它灵活的系统、高对比度的成像结果、无需干涉装置和光源机械扫描部件,在数字病理学、体外细胞无标记观察和实时监测等方面得到了大量的研究和应用。文中主要介绍了FPM技术的系统误差校正方法、基于FPM的高通量显微成像和高速显微成像技术研究的基本原理、研究现状和最新进展,提出了目前面临的问题以及未来的发展趋势。
  • [1] Murphy D B, Davidson M W. Fundamentals of Light Microscopy and Electronic Imaging[M]. Hoboken:John Wiley Sons, 2012.
    [2] Thorn K. A quick guide to light microscopy in cell biology[J]. Molecular Biology of the Cell, 2016, 27(2):219-222.
    [3] Turpin T, Gesell L, Lapides J, et al. Theory of the synthetic aperture microscope[C]//SPIE, 1995, 2566:230-240.
    [4] Holloway J, Wu Y, Sharma M K, et al. SAVI:Synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography[J]. Science Advances, 2017, 3(4):e1602564.
    [5] Fischer R S, Wu Y, Kanchanawong P, et al. Microscopy in 3D:a biologist's toolbox[J]. Trends in Cell Biology, 2011, 21(12):682-691.
    [6] Day R N, Davidson M W. The fluorescent protein palette:tools for cellular imaging[J]. Chemical Society Reviews, 2011, 40(12):5923.
    [7] Dean K M, Palmer A E. Advances in fluorescence labeling strategies for dynamic cellular imaging[J]. Nature Chemical Biology, 2014, 10(7):512-523.
    [8] Pawley J B. Handbook of Biological Confocal Microscopy[M]. Madison:Springer, 2006.
    [9] Minsky M. Memoir on inventing the confocal scanning microscope[J]. Scanning, 1988, 10(4):128-138.
    [10] Sekar R B, Periasamy A. Fluorescence resonance energy transfer(FRET) microscopy imaging of live cell protein localizations[J]. The Journal of Cell Biology, 2003, 160(5):629-633.
    [11] Heim R, Tsien R Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer[J]. Current Biology, 1996, 6(2):178-182.
    [12] Selvin P R. The renaissance of fluorescence resonance energy transfer[J]. Nature Structural Molecular Biology, 2000, 7(9):730-734.
    [13] Bastiaens P I, Squire A. Fluorescence lifetime imaging microscopy:spatial resolution of biochemical processes in the cell[J]. Trends in Cell Biology, 1999, 9(2):48-52.
    [14] Digman M A, Caiolfa V R, Zamai M, et al. The phasor approach to fluorescence lifetime imaging analysis[J]. Biophysical Journal, 2008, 94(2):L14-L16.
    [15] Axelrod D. Total internal reflection fluorescence microscopy in cell biology[J]. Traffic, 2011, 2(11):764-774.
    [16] Maire G, Giovannini H, Talneau A, et al. Phase imaging and synthetic aperture super-resolution via total internal reflection microscopy[J]. Optics Letters, 2018, 43(9):2173-2176.
    [17] Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structed illumination microscopy[J]. Journal of Microscopy, 2000, 198(Pt2):82-87.
    [18] Neil M A, Jukaitis R, Wilson T. Method of obtaining optical sectioning by using structured light in aconventional microscope[J]. Optics Letters, 1993, 22(24):1905-1907.
    [19] York A G, Parekh S H, Dalle Nogare D, et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy[J]. Nature Methods, 2012, 9(7):749-754.
    [20] Mudry E, Belkebir K, Girard J, et al. Structuredillumination microscopy using unknown speckle patterns[J]. Nature Photonics, 2012, 6:312-315.
    [21] Gao P, Pedrini G, Osten W. Phase retrieval with resolution enhancement by using structured illumination[J]. Optics Letters, 2013, 38(24):5204-5207.
    [22] Gao P, Pedrini G, Osten W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy[J]. Optics Letters, 2013, 38(8):1328-1330.
    [23] Qian J, Lei M, Dan D, et al. Full-color structured illumination optical sectioning microscopy[J]. Scientific Reports, 2015, 5:14513.
    [24] Dan D, Lei M, Yao B, et al. DMD-based LED-illumination super-resolution and optical sectioning microscopy[J]. Scientific Reports, 2013, 3:1116.
    [25] Zhou X, Lei M, Dan D, et al. Image recombination transform algorithm for superresolution structured illumination microscopy[J]. Journal of Biomedical Optics, 2016, 21(9):096009.
    [26] Yeh L H, Tian L, Waller L. Structured illumination microscopy with unknown patterns and a statistical prior[J]. Biomedical Optics Express, 2017, 8(2):695-711.
    [27] Qian J, Dang S, Wang Z, et al. Large-scale 3D imaging of insects with nature color[J]. Optics Express, 2019, 27(4):4845-4857.
    [28] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J].Science, 2006, 313(5793):1642-1645.
    [29] Hess S T, Girirajan T P, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 2006, 91(11):4258-4272.
    [30] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy(STORM)[J].Nature Methods, 2005, 3(10):793-795.
    [31] Huang B, Babcock H, Zhuang X. Breaking the diffraction barrier:super-resolution imaging of cells[J]. Cell, 2010, 143(7):1047-1058.
    [32] Sigal Y M, Zhou R, Zhuang X. Visualizing and discovering cellular structures with super-resolution microscopy[J]. Science, 2018, 361(6405):880-887.
    [33] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11):780-782.
    [34] Gao P, Prunsche B, Zhou L, et al. Background suppression in fluorescence nanoscopy with stimulated emission doubledepletion[J]. Nature Photonics, 2017, 11:163-169.
    [35] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 348(4951):73-76.
    [36] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Method, 2005, 2(12):932-940.
    [37] Keller P J, Schmidt A D, Wittbrodt J, et al. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy[J]. Science, 2008, 322(5904):1065-1069.
    [38] Chen B C, Legant W R, Wang K, et al. Lattice light-sheet microscopy:imaging molecules to embryos at high spatiotemporal resolution[J]. Science, 2014, 346(6208):1257998.
    [39] Keller P J, Ahrens M B. Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy[J]. Neuron, 2015, 85(3):462-483.
    [40] Hoebe R A, Van Oven C H, Gadella T W Jr, et al. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging[J]. Nature Biotechnology, 2007, 25(2):249-253.
    [41] Gordeon M P, Ha T, Selvin P R. Single-molecule high-resolution imaging with photobleaching[J]. Proceedings of the National Academy of Sciences, 2004, 101(17):6462-6465.
    [42] Ferrara M A, Di Caprio G, Manag S, et al. Label-free imaging and biochemical characterization of bovine sperm cells[J]. Biosensors, 2015, 5(2):141-157.
    [43] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 1942, 9(7):686-698.
    [44] Nomarski G. Differential microinterferometer with polarized waves[J]. Journal de Physique et le Radium, 1955, 16:9-13.
    [45] Gao P, Yao B, Min J, et al. Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cubebeamsplitters[J]. Optics Express, 2011, 19(3):1930-1935.
    [46] Gao P, Yao B, Lindlein N, et al. Phase-shift extraction for generalized phase-shifting interferometry[J]. Optics Letters,2009, 34(22):3553-3555.
    [47] Gao P, Harder I, Nercissian V, et al. Phase-shifting point-diffraction interferometry with common-path and in-line configuration formicroscopy[J]. Optics Letters, 2010, 35(5):712-714.
    [48] Guo R, Yao B, Gao P, et al. Off-axis digital holographic microscopy with LED illumination based on polarization filtering[J]. Applied Optics, 2013, 52(34):8233-8238.
    [49] Zheng J, Gao P, Shao X, et al. Refractive index measurement of suspended cells using opposed-view digital holographic microscopy[J]. Applied Optics, 2017, 56(32):9000-9005.
    [50] Guo R, Wang F. Compact and stable real-time dual-wavelength digital holographic microscopy with a long-working distance objective[J]. Optics Express, 2017, 25(20):24512-24520.
    [51] Mico V, Ferreira C, Garcia J. Surpassing digital holography limits bylensless object scanning holography[J]. Optics Express, 2012, 20(9):9382-9395.
    [52] Creath K. Phase-shifting speckle interferometry[J]. Applied Optics, 1985, 24(18):3053-3058.
    [53] Rao C, Jiang W, Ling N. Measuring the power-law exponent of an atmospheric turbulence phase power spectrum with a Shack-Hartmann wave-front sensor[J]. Optics Letters, 1999, 24(15):1008-1010.
    [54] Klibanov M V, Sacks P E, Tikhonravov A V. The phase retrieval problem[J]. Inverse Problems, 1995, 11(1):1-28.
    [55] Teague M R. Deterministic phase retrieval:A Green's function solution[J]. Journal of the Optical Society of America, 1983, 73(11):1434-1441.
    [56] Fienup J R. Phase retrieval algorithms:a comparison[J]. Applied Optics, 1982, 21(15):2758-2769.
    [57] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3(1):27-29.
    [58] Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation:fast solution with use of discrete cosine transform[J]. Optics Express, 2014, 22(8):9220-9244.
    [59] Zuo C, Chen Q, Huang L, et al. Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation[J]. Optics Express, 2014, 22(14):17172-17186.
    [60] Huang L, Zuo C, Idir M, et al. Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms[J]. Optics Letters, 2015, 40(9):1976-1979.
    [61] Li J, Chen Q, Sun J, et al. Optimal illumination pattern for transport-of-intensity quantitative phase microscopy[J]. Optics Express, 2018, 26(21):27599-27614.
    [62] Zuo C, Chen Q, Qu W, et al. High-speed transport-of-intensity phase microscopy with an electrically tunable lens[J]. Optics Express, 2013, 21(20):24060-24075.
    [63] Zuo J, Vartanyants I, Gao M, et al. Atomic resolution imaging of a carbon nanotube from diffraction intensities[J]. Science, 2003, 300(5624):1419-1421.
    [64] Faulkner H M L, Rodenburg J M. Movable aperture lenless transmission microscopy:a novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2):023903.
    [65] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 2004, 85(20):4795-4797.
    [66] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10):1256-1262.
    [67] Thibault P, Dierolf M, Bunk O, et al. Probe retrieval in ptychographic coherent diffractive imaging[J]. Ultramicroscopy, 2009, 109(4):338-343.
    [68] Maiden M, Humphry J, Rodenburg J. Ptychographic transmission microscopy in three dimensions using a multi-slice approach[J]. Journal of the Optical Society of America A, 2012, 29(8):1606-1614.
    [69] Li P, Batey D, Edo T, et al. Separation of three-dimensional scattering effects in tilt-series Fourier ptychography[J]. Ultramicroscopy, 2015, 158:1-7.
    [70] Maiden A, Johnson D, Li P. Further improvements to the ptychographical iterative engine[J]. Optica, 2017, 4(7):736-745.
    [71] Pfeifer M, Williams G, Vartanyants I, et al. Three-dimensional mapping of a deformation field inside a nanocrystal[J]. Nature, 2006, 442:63-66.
    [72] Thibault P, Dierolf M, Menzel A, et al. High-resolution scanning x-ray diffraction microscopy[J]. Science, 2008, 321(5887):379-382.
    [73] Humphry M J, Kraus B, Hurst A C, et al. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging[J]. Nature Communications, 2012, 3:730.
    [74] Holler M, Diaz A, Guizar-sicairos M, et al. X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution[J]. Scientific Reports, 2014, 4:3857.
    [75] Dierolf M, Menzel A, Thibault P, et al. Ptychographic X-ray computed tomography at the nanoscale[J]. Nature, 2010,467:436-440.
    [76] Wang H, Liu C, Pan X, et al. The application of ptychography in the field of high power laser[C]//SPIE, 2015, 9255:925534.
    [77] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 2013, 494(7435):68-71.
    [78] Liu C, Walther T, Rodenburg J M. Influence of thick crystal effects on ptychographic image reconstruction with moveable illumination[J]. Ultramicroscopy, 2009, 109(10):1263-1275.
    [79] Yao Yudong, Liu Cheng, Pan Xingchen, et al. Research status and development trend of PIE imaging method[J]. Chinese Journal of Lasers, 2016, 43(6):0609001. (in Chinese)
    [80] Chen Wen, Jiang Zhilong, Liu Cheng, et al. Depth resolved imaging by 3PIE with dual-beam illumination[J]. Acta Optica Sinica, 2016, 36(8):0811002. (in Chinese)
    [81] Yu W, Wang S, Veetil S, et al. High-quality image reconstruction method for ptychography with partially coherent illumination[J]. Physical Review B, 2016, 93:241105.
    [82] Pan An, Wang Dong, Shi Yishi, et al. Incoherent ptychography in Fresnel domain with simultaneous multi-wavelength illumination[J]. Acta Physica Sinica, 2016, 65(12):124201.(in Chinese)
    [83] Pan An, Zhang Xiaofei, Wang Bin, et al. Experimental study on three-dimensional ptychography for thick sample[J]. Acta Physica Sinica, 2016, 65(1):014204. (in Chinese)
    [84] Pan A, Zhou M, Zhang Y, et al. Adaptive-window angular spectrum algorithm for near-field ptychography[J]. Optics Communications, 2019, 430:73-82.
    [85] Pan A, Yao B. Three-dimensional space optimization for near-field ptychography[J]. Optics Express, 2019, 27(4):5433-5446.
    [86] Shi Y, Li T, Wang Y, et al. Optical image encryption via ptychography[J]. Optics Letters, 2013, 38(9):1425-1427.
    [87] Shi Y, Wang Y, Li T, et al. Ptychographical imaging algorithm with a single random phase encoding[J]. Chinese Physics Letters, 2013, 30(7):074203.
    [88] Gao Q, Wang Y, Li T, et al. Optical encryption of unlimited-size images based on ptychographic scanning digital holography[J]. Applied Optics, 2014, 53(21):4700-4707.
    [89] Li T, Shi Y. Security risk of diffractive-imaging-based optical cryptosystem[J]. Optics Express, 2015, 23(16):21384-21391.
    [90] Liu Zhenjun, Guo Chen, Tan Jiubin. Lensfree computational imaging based on multi-distance phase retrieval[J]. Infrared and Laser Engineering, 2018, 47(10):1002002. (in Chinese)
    [91] Zhou M, Min J, Gao P, et al. Single-beam phase retrieval with partially coherent light illumination[J]. Journal of Optics, 2016, 18(1):015701.
    [92] Redondo R, Bueno G, Valdiviezo J C, et al. Autofocus evaluation for brightfield microscopy pathology[J]. Journal of Biomedical Optics, 2012, 17(3):036008.
    [93] Wang Z, Lei M, Yao B, et al. Compact multi-band fluorescent microscope with an electrically tunable lens for autofocusing[J]. Biomedical Optics Express, 2015, 6(11):4353-4364.
    [94] Heng X, Erickson D, Baugh L R, et al. Optofluidic microscopy:a method for implementing high resolution optical microscope on a chip[J]. Lab on a Chip, 2006, 6(10):1274-1276.
    [95] Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics[J].Nature, 2006, 442(7101):381-386.
    [96] Heng X, Hsiao E, Psaltis D, et al. An optical tweezer actuated, nanoaperture-grid based optofluidic microscope implementation[J]. Optics Express, 2007, 15(25):16367-16375.
    [97] Lew M, Cui X, Heng X, et al. Interference of a four-hole aperture for on-chip quantitative two-dimensional differential phase imaging[J]. Optics Letters, 2007, 32(20):2963-2965.
    [98] Cui X, Lee L M, Heng X, et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging[J]. Proceedings of the National Academy of Science, 2008, 105(31):10670-10675.
    [99] Wu J, Cui X, Lee L M, et al. The application of Fresnel zone plate based projection in optofluidic microscopy[J]. Optics Express, 2008, 16(20):15595-15602.
    [100] Pang S, Cui X, DeModena J, et al. Implementation of a color-capable optofluidic microscope on a RGB CMOS color sensor chip substrate[J]. Lab on a Chip, 2010, 10(4):411-414.
    [101] Zheng G, Lee S A, Yang S, et al. Sub-pixel resolving optofluidic microscope for on-chip cell imaging[J]. Lab on a Chip, 2010, 10(22):3125-3129.
    [102] Zheng G, Lee S A, Antebi Y, et al. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM)[J]. Proceedings of the National Academy of Science, 2011, 108(41):16889-16894.
    [103] Bishara W, Su T W, Coskun A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J]. Optics Express, 2010, 18(11):11181-11191.
    [104] Greenbaum A, Luo W, Su T W, et al. Imaging without lenses:achievements and remaining challenges of wide-field on-chip microscopy[J]. Nature Methods, 2012, 9(9):889-895.
    [105] Luo W, Greenbaum A, Zhang Y, et al. Synthetic aperture-based on-chip microscopy[J]. Light:Science Applications, 2015, 4:e261.
    [106] Zhang J, Sun J, Chen Q, et al. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy[J]. Scientific Reports, 2017, 7(1):11777.
    [107] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9):739-745.
    [108] Ou X, Horstmeyer R, Yang C, et al. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Optics Letters, 2013, 38(22):4845-4848.
    [109] Zheng G, Ou X, Horstmeyer R, et al. Characterization of spatially varying aberrations for wide field-of-view microscopy[J]. Optics Express, 2013, 21(13):15131-15143.
    [110] Ou X, Zheng G, Yang C. Embedded pupil function recovery for Fourier ptychographic microscopy[J]. Optics Express, 2014, 22(5):4960-4972.
    [111] Bian Z, Dong S, Zheng G. Adaptive system correction for robust Fourier ptychographic imaging[J]. Optics Express, 2013, 21(26):32400-32410.
    [112] Zheng G. Breakthroughs in photonics 2013:Fourier ptychographic imaging[J]. IEEE Photonics Journal, 2014, 6(2):1-7.
    [113] Dong S, Nanda P, Shiradkar R, et al. High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography[J]. Optics Express, 2014, 22(17):20856-20870.
    [114] Dong S, Shiradkar R, Nanda P, et al. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging[J]. Biomedical Optics Express, 2014, 5(6):1757-1767.
    [115] Horstmeyer R, Ou X, Zheng G, et al. Digital pathology with Fourier ptychography[J]. Computerized Medical Imaging and Graphics, 2015, 42:38-43.
    [116] Guo K, Liao J, Bian Z, et al. Instant scope:a low-cost whole slide imaging system with instant focal plane detection[J]. Biomedical Optics Express, 2015, 6(9):3210-3216.
    [117] Guo K, Dong S, Nanda P, et al. Optimization of sampling pattern and the design of Fourier ptychographic illuminator[J]. Optics Express, 2015, 23(5):6171-6180.
    [118] Horstmeyer R, Chung J, Ou X, et al. Diffraction tomography with Fourier ptychography[J]. Optica, 2016, 3(8):827-835.
    [119] Pacheco S, Zheng G, Liang R. Reflective Fourier ptychography[J]. Journal of Biomedical Optics, 2016, 21(2):026010.
    [120] Chung J, Kim J, Ou X, et al. Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography[J]. Biomedical Optics Express, 2016, 7(2):352-368.
    [121] Zheng G, Ou X, Yang C. 0.5 gigapixel microscopy using a flatbed scanner[J]. Biomedical Optics Express, 2013, 5(1):1-8.
    [122] Guo K, Bian Z, Dong S, et al. Microscopy illumination engineering using a low-cost liquid crystal display[J]. Biomedical Optics Express, 2015, 6(2):574-579.
    [123] Dong S, Horstmeyer R, Shiradkar R, et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging[J]. Optics Express, 2014, 22(11):13586-13599.
    [124] Horstmeyer R, Chen R Y, Ou X, et al. Solving ptychography with a convex relaxation[J]. New Journal of Physics, 2015, 17(5):053044.
    [125] Horstmeyer R, Yang C. A phase space model of Fourier ptychographic microscopy[J]. Optics Express, 2014, 22(1):338-358.
    [126] Kim J, Henley B M, Kim C H, et al. Incubator embedded cell culture imaging system(emsight) based on fourier ptychographic microscopy[J]. Biomedical Optics Express, 2016, 7(8):3097-3110.
    [127] Ou X, Chuang J, Horstmeyer R, et al. Aperture scanning Fourier ptychographic microscopy[J]. Biomedical Optics Express, 2016, 7(8):3140-3150.
    [128] Mico V, Zheng J, Garcia J, et al. Resolution enhancement in quantitative phase microscopy[J]. Advances in Optics and Photonics, 2019, 11(1):135-214.
    [129] Tian L, Wang J, Waller L. 3D differential phase-contrast microscopy with computational illumination using an LED array[J]. Optics Letter, 2014, 39(5):1326-1329.
    [130] Liu Z, Tian L, Liu S, et al. Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope[J]. Journal of Biomedical Optics, 2014, 19(10):106002.
    [131] Tian L, Waller L. Quantitative differential phase contrast imaging in an LED array microscope[J]. Optics Express, 2015, 23(9):11394-11403.
    [132] Chen M, Tian L, Waller L. 3D differential phase contrast microscopy[J]. Biomedical Optics Express, 2016, 7(10):3940-3950.
    [133] Phillips Z F, Chen M, Waller L. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)[J]. PloS One, 2017, 12(2):e0171228.
    [134] Yeh L H, Dong J, Zhong J, et al Experimental robustness of Fourier ptychography phase retrieval algorithms[J]. Optics Express, 2015, 23(26):33214-33240.
    [135] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2015, 2(2):104-111.
    [136] Tian L, Li X, Ramchandran K, et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope[J]. Biomedical Optics Express, 2014, 5(7):2376-2389.
    [137] Tian L, Liu Z, Yeh L H, et al. Computational illumination for high-speed in vitro fourier ptychographic microscopy[J].Optica, 2015, 2(10), 904-911.
    [138] Guo K, Zhang Z, Jiang S, et al. 13-fold resolution gain through turbid layer via translated unknown speckle illumination[J]. Biomedical Optics Express, 2018, 9(1):260-274.
    [139] Yilmaz H, Putten E, Bertolotti J, et al. Speckle correlation resolutionenhancement of wide-field fluorescence imaging[J].Optica, 2015, 2(5):424-429.
    [140] Yeh L H, Chowdhury S, Waller L. Computational structured illumination forhigh-content fluorescence and phase microscopy[J]. Biomedical Optics Express, 2019, 10(4):1978-1998.
    [141] Zhang Y, Jiang W, Dai Q. Nonlinear optimization approach for Fourier ptychographic microscopy[J]. Optics Express, 2015, 23(26):33822-33835.
    [142] Bian L, Suo J, Zheng G, et al. Fourier ptychographic reconstruction using Wirtinger flow optimization[J]. Optics Express, 2015, 23(4):4856-4866.
    [143] Bian L, Zheng G, Guo K, et al. Motion-corrected Fourier ptychography[J]. Biomedical Optics Express, 2016, 7(11):4543-4553.
    [144] Sun J, Chen Q, Zhang Y, et al. Efficient positional misalignment correction method for fourier ptychographic microscopy[J]. Biomedical Optics Express, 2016, 7(3):1336-1350.
    [145] Zuo C, Sun J, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 2016, 24(18):20724-20744.
    [146] Fan Y, Sun J, Chen Q, et al. Adaptive denoising method for Fourier ptychographic microscopy[J]. Optics Communications, 2017, 404:23-31.
    [147] Sun J, Zuo C, Zhang L, et al. Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations[J]. Scientific Reports, 2017, 7(1):1187.
    [148] Sun J, Zuo C, Zhang J, et al. High-speed fourier ptychographic microscopy based on programmable annular illuminations[J].Scientific Reports, 2018, 8(1):7669.
    [149] Sun J, Chen Q, Zhang J, et al. Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography[J]. Optics Letters, 2018, 43(14):3365-3368.
    [150] Pan A, Zhang Y, Zhao T, et al. System calibration method for Fourier ptychographic microscopy[J]. Journal of Biomedical Optics, 2017, 22(9):096005.
    [151] Zhang Y, Pan A, Lei M, et al. Data preprocessing methods for robust Fourier ptychographic microscopy[J]. Optics Engineering, 2017, 56(12):123107.
    [152] Pan A, Zhang Y, Wen K, et al. Subwavelength resolution Fourier ptychography with hemispherical digital condensers[J]. Optics Express, 2018, 26(18):23119-23131.
    [153] Pan A, Zuo C, Xie Y, et al. Vignetting effect in Fourier ptychographic microscopy[J]. Optics and Lasers in Engineering, 2019, 120:40-48.
    [154] Pan A, Wen K, Yao B. Linear space-variant optical cryptosystem via Fourier ptychography[J]. Optics Letters, 2019, 44(8):2032-2035.
    [155] Maiden A M, Humphry M J, Sarahan M C, et al. An annealing algorithm to correct positioning errors in ptychography[J]. Ultramicroscopy, 2012, 120:64-72.
    [156] Zhang F, Peterson I, Vila-Comamala J, et al. Translation position determination in ptychographic coherent diffraction imaging[J]. Optics Express, 2013, 21(11):13592-13606.
    [157] Horstmyer R, Ou X, Chuang J, et al. Overlapped Fourier coding for optical aberration removal[J]. Optics Express, 2014, 22(20):24062-24080.
    [158] Horstmeyer R, Heintzmann R, Popescu G, et al. Standardizing the resolution claims for coherent microscopy[J]. Nature Photonics, 2016, 10:68-76.
    [159] Gibbs J W. Fourier series[J]. Nature, 1898, 59:200.
    [160] Pan A, Zhang Y, Zhao T, et al. https://www.sites.google.com/site/dranpanblog/publications.
    [161] Sun J, Chen Q, Zhang Y, et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space[J]. Optics Express, 2016, 24(14):15765-15781.
    [162] Bian L, Suo J, Situ G, et al. Content adaptive illumination for Fourier ptychography[J]. Optics Letters, 2014, 39(23):6648-6651.
    [163] Zhang Y, Jiang W, Tian L, et al. Self-learning based Fourier ptychographic microscopy[J]. Optics Express, 2015, 23(14):18471-18486.
    [164] He X, Liu C, Zhu J. Single-shot fourier ptychography based on diffractive beam splitting[J]. Optics Letters, 2018, 43(2):214-217.
    [165] Lee B, Hong K, Yoo D, et al. Single-shot phase retrieval via Fourier ptychography[J]. Optica, 2018, 5(8):976-983.
    [166] Konda P, Taylor J M, Harvey A R. Scheimpflug multi-aperture Fourier ptychography:coherent computational microscope with gigapixels/s data acquisition rates using 3D printed components[C]//SPIE, 2017, 10076:100760R.
    [167] Konda P, Taylor J M, Harvey A R. Parallelized aperture synthesis using multi-aperture Fourier ptychographic microscopy[J]. arXiv preprint arXiv, 2018:1806.02317.
    [168] Thibault P, Guizar-Sicairos M. Maximum-likelihood refinement for coherent diffraction imaging[J]. New Journal of Physics, 2012, 14(6):063004.
    [169] Bian L, Suo J, Chung J, et al. Fourier ptychographic reconstruction using poisson maximum likelihood and truncated Wirtinger gradient[J]. Scientific Reports, 2016, 6:27384.
  • [1] 刘金鹏, 冯怡, 刘蕾, 相萌, 刘飞, 邵晓鹏.  全息技术在散射成像领域中的研究及应用进展(特邀) . 红外与激光工程, 2022, 51(8): 20220307-1-20220307-15. doi: 10.3788/IRLA20220307
    [2] 陈钱.  先进夜视成像技术发展探讨 . 红外与激光工程, 2022, 51(2): 20220128-1-20220128-8. doi: 10.3788/IRLA20220128
    [3] 左超, 陈钱.  计算光学成像:何来,何处,何去,何从? . 红外与激光工程, 2022, 51(2): 20220110-1-20220110-184. doi: 10.3788/IRLA20220110
    [4] 赵海博, 刘彦丽, 杨雯铄, 苏云, 高大化, 孙权森, 赵慧洁.  双通道衍射计算成像光谱仪系统 . 红外与激光工程, 2022, 51(5): 20220077-1-20220077-8. doi: 10.3788/IRLA20220077
    [5] 和河向, 黎永耀, 黄锦圣.  基于相位共轭实现散射成像及光学幻像的双功能散射光调控方法(特邀) . 红外与激光工程, 2022, 51(8): 20220266-1-20220266-12. doi: 10.3788/IRLA20220266
    [6] 王爱业, 潘安, 马彩文, 姚保利.  相位恢复算法:原理、发展与应用(特邀) . 红外与激光工程, 2022, 51(11): 20220402-1-20220402-26. doi: 10.3788/IRLA20220402
    [7] 李珮明, 蒋文杰, 赵海潇, 孙宝清.  掩膜版调制关联成像的发展及应用(特邀) . 红外与激光工程, 2021, 50(12): 20210738-1-20210738-14. doi: 10.3788/IRLA20210738
    [8] 程永强, 王宏强, 曹凯程, 刘康, 罗成高.  微波关联成像研究进展及展望(特邀) . 红外与激光工程, 2021, 50(12): 20210790-1-20210790-21. doi: 10.3788/IRLA20210790
    [9] 廖兆琨, 王汉, 陈文, 孙鸣捷.  紧凑双光路单像素成像系统(特邀) . 红外与激光工程, 2021, 50(12): 20210723-1-20210723-7. doi: 10.3788/IRLA20210723
    [10] 孙宝清, 江山, 马艳洋, 蒋文杰, 殷永凯.  单像素成像在特殊波段及三维成像的应用发展 . 红外与激光工程, 2020, 49(3): 0303016-0303016-16. doi: 10.3788/IRLA202049.0303016
    [11] 范斌, 刘彦丽, 赵海博, 徐婧, 孙权森, 王旭.  新型深空高光谱衍射计算成像探测技术(特约) . 红外与激光工程, 2020, 49(5): 20201005-20201005-6. doi:  10.3788.IRLA20201005
    [12] 张佳琳, 陈钱, 张翔宇, 孙佳嵩, 左超.  无透镜片上显微成像技术:理论、发展与应用 . 红外与激光工程, 2019, 48(6): 603009-0603009(33). doi: 10.3788/IRLA201948.0603009
    [13] 张子邦, 陆天傲, 彭军政, 钟金钢.  傅里叶单像素成像技术与应用 . 红外与激光工程, 2019, 48(6): 603002-0603002(19). doi: 10.3788/IRLA201948.0603002
    [14] 李生福, 赵宇, 罗振雄, 叶雁, 刘正君.  空间频谱约束傅里叶叠层成像重建方法 . 红外与激光工程, 2019, 48(4): 422003-0422003(8). doi: 10.3788/IRLA201948.0422003
    [15] 赵楠翔, 胡以华.  激光反射层析成像相位恢复算法研究 . 红外与激光工程, 2019, 48(10): 1005005-1005005(7). doi: 10.3788/IRLA201948.1005005
    [16] 刘正君, 耿勇, 谭久彬.  基于柱透镜多旋转测量的计算成像 . 红外与激光工程, 2019, 48(6): 603016-0603016(5). doi: 10.3788/IRLA201948.0603016
    [17] 刘正君, 郭澄, 谭久彬.  基于多距离相位恢复的无透镜计算成像技术 . 红外与激光工程, 2018, 47(10): 1002002-1002002(16). doi: 10.3788/IRLA201847.1002002
    [18] 李生福, 赵宇, 陈光华, 罗振雄, 叶雁.  选择型照明傅里叶叠层成像提取粒子尺度 . 红外与激光工程, 2017, 46(11): 1103005-1103005(8). doi: 10.3788/IRLA201746.1103005
    [19] 赵惠, 魏静萱, 庞志海, 刘美莹.  波前编码超分辨成像技术 . 红外与激光工程, 2016, 45(4): 422003-0422003(10). doi: 10.3788/IRLA201645.0422003
    [20] 刘子伟, 许廷发, 王洪庆, 申子宜, 饶志涛.  深度成像理论与实现 . 红外与激光工程, 2016, 45(7): 726001-0726001(5). doi: 10.3788/IRLA201645.0726001
  • 加载中
计量
  • 文章访问数:  1304
  • HTML全文浏览量:  248
  • PDF下载量:  305
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-05
  • 修回日期:  2019-02-03
  • 刊出日期:  2019-06-25

高通量快速傅里叶叠层显微成像技术研究进展

doi: 10.3788/IRLA201948.0603012
    作者简介:

    潘安(1993-),男,博士生,主要从事定量相位成像和计算光学显微成像方面的研究。Email:panan@opt.cn

基金项目:

国家自然科学基金(61377008,81427802)

  • 中图分类号: TN911.74

摘要: 傅里叶叠层显微术(Fourier ptychographic microscopy,FPM)是一极具前景的计算成像技术,它具有高分辨率、大视场、无标记和定量相位等优势。由于它灵活的系统、高对比度的成像结果、无需干涉装置和光源机械扫描部件,在数字病理学、体外细胞无标记观察和实时监测等方面得到了大量的研究和应用。文中主要介绍了FPM技术的系统误差校正方法、基于FPM的高通量显微成像和高速显微成像技术研究的基本原理、研究现状和最新进展,提出了目前面临的问题以及未来的发展趋势。

English Abstract

参考文献 (169)

目录

    /

    返回文章
    返回