留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

差分相衬显微成像技术发展综述

范瑶 陈钱 孙佳嵩 张祖鑫 卢林芃 左超

范瑶, 陈钱, 孙佳嵩, 张祖鑫, 卢林芃, 左超. 差分相衬显微成像技术发展综述[J]. 红外与激光工程, 2019, 48(6): 603014-0603014(20). doi: 10.3788/IRLA201948.0603014
引用本文: 范瑶, 陈钱, 孙佳嵩, 张祖鑫, 卢林芃, 左超. 差分相衬显微成像技术发展综述[J]. 红外与激光工程, 2019, 48(6): 603014-0603014(20). doi: 10.3788/IRLA201948.0603014
Fan Yao, Chen Qian, Sun Jiasong, Zhang Zuxin, Lu Linpeng, Zuo Chao. Review of the development of differential phase contrast microscopy[J]. Infrared and Laser Engineering, 2019, 48(6): 603014-0603014(20). doi: 10.3788/IRLA201948.0603014
Citation: Fan Yao, Chen Qian, Sun Jiasong, Zhang Zuxin, Lu Linpeng, Zuo Chao. Review of the development of differential phase contrast microscopy[J]. Infrared and Laser Engineering, 2019, 48(6): 603014-0603014(20). doi: 10.3788/IRLA201948.0603014

差分相衬显微成像技术发展综述

doi: 10.3788/IRLA201948.0603014
基金项目: 

国家自然科学基金(61722506,11574152);江苏省杰出青年基金(BK20170034);江苏省重点研发计划项目(BE2017162);江苏省“333工程”科研项目资助计划(BRA2016407);南京理工大学自主科研基金(30917011204)

详细信息
    作者简介:

    范瑶(1993-),女,博士生,主要从事相位显微成像方面的研究。Email:fanyaoscilab@163.com

    通讯作者: 左超(1987-),男,教授,博士生导师,博士,主要从事计算光学显微成像与快速三维传感等方面的研究。Email:zuochao@njust.edu.cn
  • 中图分类号: O438

Review of the development of differential phase contrast microscopy

  • 摘要: 差分相衬(Differential phase contrast,DPC)成像是一种基于部分相干照明调控的无标记非干涉相位成像方法,它为未染色透明样品提供了一种快速、有效且高分辨率的可视化手段。DPC通过多次非对称照明调控或非对称孔径调制使不可见的样品相位信息转换为成像器件可直接探测的强度信号,从而为定性相衬成像甚至定量相位重建提供了可能。近年来,随着该领域研究的逐步深入,成像的相位传递函数得以明确推导,DPC已经逐步从定性观察走向了定量研究。另一方面,得益于全孔径照明调控和高效相位反卷积算法,DPC定量相位成像的空间分辨率可达到非相干衍射极限,并能够获得低噪声、高精度的定量相位重构结果。通过与三维光学传递函数理论交融借鉴,DPC最近已被进一步拓展到了三维衍射层析领域,实现了厚样品三维折射率的定量成像。文中从DPC成像方法的基本原理、成像系统与算法优化等几个方面对其历史发展、研究现状和最新进展进行了详细综述,并讨论了该方法现存的一些关键问题以及今后可能的研究方向。
  • [1] Arnison M R, Larkin K G, Sheppard C J R, et al. Linear phase imaging using differential interference contrast microscopy[J]. Journal of Microscopy, 2004, 214(1):7.
    [2] Mertz J. Introduction to Optical Microscopy[M]. Colorado:Roberts, 2010:138.
    [3] Zernike F. How I discovered phase contrast[J]. Science, 1955, 121(3141):345-349.
    [4] Burch C, Stock J. Phase-contrast microscopy[J]. Journal of Scientific Instruments, 1942, 19(5):71.
    [5] Hamilton D, Sheppard C. Differential phase contrast in scanning optical microscopy[J]. Journal of Microscopy, 1984, 133(1):27.
    [6] Hamilton D K, Sheppard C J R, Wilson T. Improved imaging of phase gradients in scanning optical microscopy[J]. Journal of Microscopy, 1984, 135(3):275.
    [7] Kim Y, Shim H, Kim K, et al. Profiling individual human red blood cells using common-path diffraction optical tomography[J]. Scientific Reports, 2014, 4:6659.
    [8] Popescu G. Quantitative phase imaging of nanoscale cell structure and dynamics[J]. Methods in Cell Biology, 2008, 90:87-115.
    [9] Mann C J, Yu L, Lo C M, et al. High-resolution quantitative phase-contrast microscopy by digital holography[J]. Optics Express, 2005, 13(22):8693.
    [10] Marquet P, Rappaz B, Magistretti P J, et al. Digital holographic microscopy:a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy[J]. Optics Letters, 2005, 30(5):468.
    [11] Kemper B, von Bally G. Digital holographic microscopy for live cell applications and technical inspection[J]. Applied Optics, 2008, 47(4):A52.
    [12] Kou S S, Waller L, Barbastathis G, et al. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging[J]. Optics Letters, 2010, 35(3):447-449.
    [13] Petruccelli J C, Tian L, Barbastathis G. The transport of intensity equation for optical path length recovery using partially coherent illumination[J]. Optics Express, 2013, 21(12):14430-14441.
    [14] Zuo C, Chen Q, Qu W, et al. High-speed transport-of-intensity phase microscopy with an electrically tunable lens[J]. Optics Express, 2013, 21(20):24060-24075.
    [15] Zuo C, Chen Q, Qu W, et al. Noninterferometric single-shot quantitative phase microscopy[J]. Optics Letters, 2013, 38(18):3538-3541.
    [16] Zuo C, Chen Q, Yu Y, et al. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications[J]. Optics Express, 2013, 21(5):5346-5362.
    [17] Pfeiffer F, Weitkamp T, Bunk O, et al. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources[J]. Nature Physics, 2006, 2(4):258.
    [18] Mehta S B, Sheppard C J R. Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast[J]. Optics Letters, 2009, 34(13):1924.
    [19] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9):739.
    [20] Ou X, Horstmeyer R, Yang C, et al. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Optics Letters, 2013, 38(22):4845-4848.
    [21] Tian L, Li X, Ramchandran K, et al. Multiplexed coded illumination for Fourier Ptychography with an LED array microscope[J]. Biomedical Optics Express, 2014, 5(7):2376-2389.
    [22] Zuo C, Sun J, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 2016, 24(18):20724-20744.
    [23] Sun J, Zuo C, Zhang L, et al. Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations[J]. Scientific Reports, 2017, 7(1):1187.
    [24] Tian L, Waller L. Quantitative differential phase contrast imaging in an LED array microscope[J]. Optics Express, 2015, 23(9):11394.
    [25] Lee D, Ryu S, Kim U, et al. Color-coded LED microscopy for multi-contrast and quantitative phase-gradient imaging[J]. Biomedical Optics Express, 2015, 6(12):4912.
    [26] Lee W, Choi J H, Ryu S, et al. Color-coded LED microscopy for quantitative phase imaging:Implementation and application to sperm motility analysis[J]. Methods, 2018, 136:66-74.
    [27] Fan Y, Sun J, Chen Q, et al. Wide-field anti-aliased quantitative differential phase contrast microscopy[J]. Optics Express, 2018, 26(19):25129.
    [28] Lee W, Jung D, Ryu S, et al. Single-exposure quantitative phase imaging in color-coded LED microscopy[J]. Optics Express, 2017, 25(7):8398.
    [29] Chen M, Tian L, Waller L. 3D differential phase contrast microscopy[C]//SPIE, 2016, 9718:971826.
    [30] Tian L, Wang J, Waller L. 3D differential phase-contrast microscopy with computational illumination using an LED array[J]. Optics Letters, 2014, 39(5):1326.
    [31] Zheng G, Kolner C, Yang C. Microscopy refocusing and dark-field imaging by using a simple LED array[J]. Optics Letters, 2011, 36(20):3987.
    [32] Zuo C, Sun J, Feng S, et al. Programmable Colored Illumination Microscopy (PCIM):A practical and flexible optical staining approach for microscopic contrast enhancement[J]. Optics and Lasers in Engineering, 2016, 78:35-47.
    [33] Iglesias I. Pyramid phase microscopy[J]. Optics Letters, 2011, 36(18):3636.
    [34] Zuo C, Sun J, Feng S, et al. Programmable aperture microscopy:A computational method for multi-modal phase contrast and light field imaging[J]. Optics and Lasers in Engineering, 2016, 80:24-31.
    [35] Parthasarathy A B, Chu K K, Ford T N, et al. Quantitative phase imaging using a partitioned detection aperture[J]. Optics Letters, 2012, 37(19):4062.
    [36] Barankov R, Mertz J. Single-exposure surface profilometry using partitioned aperture wavefront imaging[J]. Optics Letters, 2013, 38(19):3961.
    [37] Iglesias I, Vargas-Martin F. Quantitative phase microscopy of transparent samples using a liquid crystal display[J]. Journal of Biomedical Optics, 2013, 18(2):026015.
    [38] Lu H, Chung J, Ou X, et al. Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast[J]. Optics Express, 2016, 24(22):25345.
    [39] Ford T N, Chu K K, Mertz J. Phase-gradient microscopy in thick tissue with oblique back-illumination[J]. Nature Methods, 2012, 9(12):1195-1197.
    [40] Ford T N, Mertz J. Video-rate imaging of microcirculation with single-exposure oblique back-illumination microscopy[J]. Journal of Biomedical Optics, 2013, 18(6):066007.
    [41] Jung D, Choi J H, Kim S, et al. Smartphone-based multi-contrast microscope using color-multiplexed illumination[J]. Scientific Reports, 2017, 7(1).
    [42] Rose H. Nonstandard imaging methods in electron microscopy[J]. Ultramicroscopy, 1976, 2:251.
    [43] Bertero M, Boccacci P. Introduction to Inverse Problems in Imaging[M]. Florida:CRC Press, 1998.
    [44] Lin Y Z, Huang K Y, Luo Y. Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination[J]. Optics Letters, 2018, 43(12):2973-2976.
    [45] Chen H H, Lin Y Z, Luo Y. Isotropic differential phase contrast microscopy for quantitative phase bio-imaging[J]. Journal of Biophotonics, 2018, 11(8):e201700364.
    [46] Fan Y, Sun J, Chen Q, et al. Optimal illumination scheme for isotropic quantitative differential phase contrast microscopy[J]. arXiv preprint arXiv, 2019:1903.10718.
    [47] Li J, Chen Q, Sun J, et al. Optimal illumination pattern for transport-of-intensity quantitative phase microscopy[J]. Optics Express, 2018, 26(21):27599-27614.
    [48] Zuo C, Sun J, Li J, et al. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination[J]. Scientific Reports, 2017, 7(1):7654.
    [49] Kellman M, Bostan E, Repina N, et al. Physics-based learned design:optimized coded-Illumination for quantitative phase imaging[J]. IEEE Transactions on Computational Imaging, 2019:1.
    [50] Chen M, Phillips Z F, Waller L. Quantitative differential phase contrast (DPC) microscopy with computational aberration correction[J]. Optics Express, 2018, 26(25):32888.
    [51] Sun J, Chen Q, Zhang Y, et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space[J]. Optics Express, 2016, 24(14):15765.
    [52] Kellman M, Chen M, Phillips Z F, et al. Motion-resolved quantitative phase imaging[J]. Biomedical Optics Express, 2018, 9(11):5456.
    [53] Phillips Z F, Chen M, Waller L. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)[J]. PLOS ONE, 2017, 12(2):e0171228.
    [54] Tian L, Liu Z, Yeh L H, et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy[J]. Optica, 2015, 2(10):904.
    [55] Sun J, Chen Q, Zhang J, et al. Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography[J]. Optics Letters, 2018, 43(14):3365.
    [56] Majeed H, Sridharan S, Mir M, et al. Quantitative phase imaging for medical diagnosis[J]. Journal of Biophotonics, 2017, 10(2):177-205.
    [57] Brenner S. The genetics of Caenorhabditis elegans[J]. Genetics, 1974, 77(1):71-94.
    [58] Sheppard C, Shotton D, Sheppard C. Confocal Laser Scanning Microscopy[M]. Oxford:BIOS Scientific Publishers Ltd, 1997.
    [59] Zipfel W R, Williams R M, Webb W W. Nonlinear magic:multiphoton microscopy in the biosciences[J]. Nature Biotechnology, 2003, 21(11):1369.
    [60] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2015, 2(2):104.
    [61] Zuo C, Sun J, Li J, et al. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography[J]. arXiv preprint arXiv, 2019:1904.09386.
    [62] Horstmeyer R, Chung J, Ou X, et al. Diffraction tomography with Fourier ptychography[J]. Optica, 2016, 3(8):827.
    [63] Sung Y, Choi W, Fang-Yen C, et al. Optical diffraction tomography for high resolution live cell imaging[J]. Optics Express, 2009, 17(1):266.
  • [1] 蔡梦雪, 王孝坤, 张志宇, 李凌众, 王晶, 李文涵, 张学军.  高陡度镜面干涉检测的仪器传递函数标定(特邀) . 红外与激光工程, 2023, 52(9): 20230462-1-20230462-8. doi: 10.3788/IRLA20230462
    [2] 张维光, 于洵, 韩峰, 张发强, 吴银花, 陈玉娇.  室内模拟环境下动态调制传递函数检测方法 . 红外与激光工程, 2022, 51(7): 20210756-1-20210756-8. doi: 10.3788/IRLA20210756
    [3] 王花花, 马健, 杨智新, 杜浩然, 高禄, 张泽.  热光非定域螺旋相衬成像(特邀) . 红外与激光工程, 2021, 50(9): 20210450-1-20210450-7. doi: 10.3788/IRLA20210450
    [4] 王子涵, 张立, 周博睿.  基于激光回馈共聚焦的层析成像系统 . 红外与激光工程, 2020, 49(8): 20190541-1-20190541-8. doi: 10.3788/IRLA20190541
    [5] 吴朝, 魏文彬, 高昆, 田扬超.  快速高能X射线光栅相衬成像 . 红外与激光工程, 2019, 48(8): 825004-0825004(5). doi: 10.3788/IRLA201948.0825004
    [6] 郭世平, 杨宁, 张子腾, 胡苏海, 张荣之.  基于波前相位单纯形样条函数建模的空间目标波前解卷积方法 . 红外与激光工程, 2019, 48(1): 117004-0117004(5). doi: 10.3788/IRLA201948.0117004
    [7] 郜鹏, 温凯, 孙雪莹, 姚保利, 郑娟娟.  定量相位显微中分辨率增强技术综述 . 红外与激光工程, 2019, 48(6): 603007-0603007(13). doi: 10.3788/IRLA201948.0603007
    [8] 赵楠翔, 胡以华.  激光反射层析成像相位恢复算法研究 . 红外与激光工程, 2019, 48(10): 1005005-1005005(7). doi: 10.3788/IRLA201948.1005005
    [9] 任姣姣, 李丽娟, 张丹丹, 乔晓利.  太赫兹时域光谱反射式层析成像技术 . 红外与激光工程, 2018, 47(2): 225002-0225002(6). doi: 10.3788/IRLA201847.0225002
    [10] 刘石祥, 尹健, 杜肖, 陈思远.  基于寄生回路的导引头传递函数及测试方法 . 红外与激光工程, 2018, 47(5): 531001-0531001(7). doi: 10.3788/IRLA201847.0531001
    [11] 黄宇翔, 张鸿翼, 李飞, 徐卫明, 胡以华.  相位调制激光雷达成像设计及仿真 . 红外与激光工程, 2017, 46(5): 506003-0506003(6). doi: 10.3788/IRLA201746.0506003
    [12] 荣锋, 梁莹, 杨亚东, 马雪皓.  X射线光栅相衬成像的仿真 . 红外与激光工程, 2017, 46(12): 1220002-1220002(7). doi: 10.3788/IRLA201746.1220002
    [13] 刘乾, 袁道成, 何华彬, 吉方.  白光干涉仪传递函数的成因分析及其非线性研究 . 红外与激光工程, 2017, 46(6): 634002-0634002(6). doi: 10.3788/IRLA201746.0634002
    [14] 赵振阳, 张鹏, 佟首峰.  基于延时自零差光相干接收机的激光器相位噪声测试系统 . 红外与激光工程, 2015, 44(11): 3211-3215.
    [15] 陈林, 杨立, 范春利, 石宏臣, 赵小龙.  基于相位的热障涂层厚度及其脱粘缺陷红外定量识别 . 红外与激光工程, 2015, 44(7): 2050-2056.
    [16] 胡玲, 王霞, 延波, 李帅帅.  水下距离选通成像系统调制传递函数模型分析 . 红外与激光工程, 2015, 44(11): 3262-3269.
    [17] 张天然, 孟照魁, 孙鸣捷.  纯相位物体的鬼成像 . 红外与激光工程, 2014, 43(9): 3105-3109.
    [18] 孟伟, 金龙旭, 李国宁, 傅瑶.  调制传递函数在遥感图像复原中的应用 . 红外与激光工程, 2014, 43(5): 1690-1696.
    [19] 俞建杰, 马晶, 谭立英, 韩琦琦.  基于相位混合算法的衍射光学元件优化设计方法 . 红外与激光工程, 2013, 42(9): 2472-2477.
    [20] 时晶晶, 姚佰栋, 鲁加国.  高速倾斜镜建模与传递函数辨识 . 红外与激光工程, 2013, 42(10): 2748-2752.
  • 加载中
计量
  • 文章访问数:  1278
  • HTML全文浏览量:  358
  • PDF下载量:  422
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-14
  • 修回日期:  2019-02-13
  • 刊出日期:  2019-06-25

差分相衬显微成像技术发展综述

doi: 10.3788/IRLA201948.0603014
    作者简介:

    范瑶(1993-),女,博士生,主要从事相位显微成像方面的研究。Email:fanyaoscilab@163.com

    通讯作者: 左超(1987-),男,教授,博士生导师,博士,主要从事计算光学显微成像与快速三维传感等方面的研究。Email:zuochao@njust.edu.cn
基金项目:

国家自然科学基金(61722506,11574152);江苏省杰出青年基金(BK20170034);江苏省重点研发计划项目(BE2017162);江苏省“333工程”科研项目资助计划(BRA2016407);南京理工大学自主科研基金(30917011204)

  • 中图分类号: O438

摘要: 差分相衬(Differential phase contrast,DPC)成像是一种基于部分相干照明调控的无标记非干涉相位成像方法,它为未染色透明样品提供了一种快速、有效且高分辨率的可视化手段。DPC通过多次非对称照明调控或非对称孔径调制使不可见的样品相位信息转换为成像器件可直接探测的强度信号,从而为定性相衬成像甚至定量相位重建提供了可能。近年来,随着该领域研究的逐步深入,成像的相位传递函数得以明确推导,DPC已经逐步从定性观察走向了定量研究。另一方面,得益于全孔径照明调控和高效相位反卷积算法,DPC定量相位成像的空间分辨率可达到非相干衍射极限,并能够获得低噪声、高精度的定量相位重构结果。通过与三维光学传递函数理论交融借鉴,DPC最近已被进一步拓展到了三维衍射层析领域,实现了厚样品三维折射率的定量成像。文中从DPC成像方法的基本原理、成像系统与算法优化等几个方面对其历史发展、研究现状和最新进展进行了详细综述,并讨论了该方法现存的一些关键问题以及今后可能的研究方向。

English Abstract

参考文献 (63)

目录

    /

    返回文章
    返回