留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于涡旋滤波的图像边缘增强研究进展

顾忠政 殷达 聂守平 冯少彤 邢芳俭 马骏 袁操今

顾忠政, 殷达, 聂守平, 冯少彤, 邢芳俭, 马骏, 袁操今. 基于涡旋滤波的图像边缘增强研究进展[J]. 红外与激光工程, 2019, 48(6): 603015-0603015(14). doi: 10.3788/IRLA201948.0603015
引用本文: 顾忠政, 殷达, 聂守平, 冯少彤, 邢芳俭, 马骏, 袁操今. 基于涡旋滤波的图像边缘增强研究进展[J]. 红外与激光工程, 2019, 48(6): 603015-0603015(14). doi: 10.3788/IRLA201948.0603015
Gu Zhongzheng, Yin Da, Nie Shouping, Feng Shaotong, Xing Fangjian, Ma Jun, Yuan Caojin. Advances of image edge enhancement based on vortex filtering[J]. Infrared and Laser Engineering, 2019, 48(6): 603015-0603015(14). doi: 10.3788/IRLA201948.0603015
Citation: Gu Zhongzheng, Yin Da, Nie Shouping, Feng Shaotong, Xing Fangjian, Ma Jun, Yuan Caojin. Advances of image edge enhancement based on vortex filtering[J]. Infrared and Laser Engineering, 2019, 48(6): 603015-0603015(14). doi: 10.3788/IRLA201948.0603015

基于涡旋滤波的图像边缘增强研究进展

doi: 10.3788/IRLA201948.0603015
基金项目: 

国家重点研发计划(2017YFB0503505);国家自然科学基金(NSFC)(61775097,61575095);教育部虚拟地理环境重点实验室(南京师范大学)开放基金(2017VGE02)

详细信息
    作者简介:

    顾忠政(1994-),男,硕士生,主要从事边缘增强、光场调控方面的研究。Email:guzhongzheng1994@163.com

  • 中图分类号: TP391

Advances of image edge enhancement based on vortex filtering

  • 摘要: 作为图像处理的一个重要手段,边缘增强技术对振幅型和相位型物体成像有着重要的作用。而基于径向希尔伯特变换的涡旋滤波技术因其能够实现各向同性边缘增强倍受关注,但传统的涡旋滤波由于中心奇点和锐利边缘引起的衍射会造成背景噪声的加剧和对比度的降低。近年来众多课题组针对涡旋滤波旁瓣抑制提出了种类各异的新型涡旋滤波器,此外基于涡旋滤波的各向同性和各向异性边缘增强技术也得到了迅速发展。文中扼要地总结了近年来几种抑制涡旋旁瓣的方法,包括拉盖尔高斯振幅调制、贝塞尔振幅调制、艾里振幅调制,并从标量涡旋滤波和矢量涡旋滤波两个方面分别综述了各向同性和各向异性边缘增强的实现方法与研究进展。
  • [1] Mazzaferri J, Ledesma S. Rotation invariant real-time optical edge detector[J]. Optics Communications, 2007, 272(2):367-376.
    [2] Jos A Ferrari, Flores J L, Csar D Perciante, et al. Edge enhancement and image equalization by unsharp masking using self-adaptive photochromic filters[J]. Applied Optics, 2009, 48(19):3570-3579.
    [3] Csar D Perciante, Jos A Ferrari. Visualization of two-dimensional phase gradients by subtraction of a reference periodic pattern[J]. Applied Optics, 2000, 39(13):2081-2083.
    [4] Meihua X. Image enhancement based on edge-directed diffusion[J]. Acta Photonica Sinica, 2005, 34(9):274-277.
    [5] Xue J, Jie L, Liu Z. An enhancement algorithm for low quality fingerprint image based on edge filter and Gabor filter[C]//SPIE, 2009, 7383:848-849.
    [6] Jiang X. Research on the key technique of image preprocessing in the fingerprint identification[C]//Software Engineering WCSE WRI World Congress on, 2009, 2:391-394.
    [7] Foo G, Palacios D M, Swartzlander G A. Optical vortex coronagraph[J]. Optics Letters, 2005, 30(24):3308-3310.
    [8] Mawet D, Serabyn E, Wallace J K, et al. Improved high contrast imaging with on-axis telescopes using a, multi-stage vortex coronagraph[J]. Optics Letters, 2011, 36(8):1506-1508.
    [9] Eschbach R. Error-diffusion algorithm with edge enhancement[J]. Journal of the Optical Society of America A, 1991, 8(12):1844-1850.
    [10] Chung K L, Pei S C, Pan Y L, et al. A gradient-based adaptive error diffusion method with edge enhancement[J]. Expert Systems with Applications, 2011, 38(3):1591-1601.
    [11] Lai J Z C, Chen C C. Algorithms of halftoning color images with edge enhancement[J]. Journal of Visual Communication and Image Representation, 2003, 14(4):389-404.
    [12] Rose R A S, Govindaraju S. Hardware based algorithm for chaotic and edge enhanced error diffusion[J]. IEEE Transactions on Consumer Electronics, 2010, 56(3):1755-1762.
    [13] Feinberg J. Real-time edge enhancement using the photorefractive effect[J]. Optics Letters, 1980, 5(8):330.
    [14] Jose A Ferrari, Jorge L Flores, Gaston A Ayubi, et al. Orientation-selective edge enhancement of phase objects[J]. Optics Communications, 2019, 434:44-48.
    [15] Shishido A. Optical image processing by means of photosensitive nonlinear liquid crystal film:edge enhancement and image addition subtraction[J]. Optics Letters, 2001, 26(15):1140.
    [16] Chaira T. A rank ordered filter for medical image edge enhancement and detection using intuitionistic fuzzy set[J]. Applied Soft Computing, 2012, 12(4):1259-1266.
    [17] Lohmann A W, Mendlovic D, Zalevsky Z. Fractional Hilbert transform[J]. Optics Letters, 1996, 21(4):281.
    [18] Davis J A, Mcnamara D E, Cottrell D M. Analysis of the fractional Hilbert transform[J]. Applied Optics, 1998, 37(29):6911-6913.
    [19] Lohmann A W, E Tepichn, J G Ramrez. Optical implementation of the fractional Hubert transform for two-dimensional objects[J]. Applied Optics, 1997, 36(26):6620-6626.
    [20] Davis J A, Mcnamara D E, Cottrell D M, et al. Image processing with the radial Hilbert transform:theory and experiments[J]. Optics Letters, 2000, 25(2):99-101.
    [21] Crabtree K, Davis J A, Moreno I. Optical processing with vortex-producing lenses[J]. Applied Optics, 2004, 43(6):1360-1367.
    [22] Swartzlander G A. Peering into darkness with a vortex spatial filter[J]. Optics Letters, 2001, 26(8):497-499.
    [23] Maurer C, Jesacher A, Frhaper S, et al. Upgrading a microscope with a spiral phase plate[J]. Journal of Microscopy, 2008, 230(1):9.
    [24] Severin Frhapter, Jesacher A, Bernet S, et al. Spiral phase contrast imaging in microscopy[J]. Optics Express, 2005, 13(3):689-694.
    [25] Bernet S, Jesacher A, Severin Frhapter, et al. Quantitative imaging of complex samples by spiral phase contrast microscopy[J]. Optics Express, 2006, 14(9):3792-3805.
    [26] Kotlyar V V, Kovalev A A, Soifer V A, et al. Sidelobe contrast reduction for optical vortex beams using a helical axicon[J]. Optics Letters, 2007, 32(8):921-923.
    [27] Kotlyar V V, Kovalev A A, Skidanov R V, et al. Diffraction of a finite-radius plane wave and a Gaussian beam by a helical axicon and a spiral phase plate[J]. Journal of the Optical Society of America A, 2007, 24(7):1955-1964.
    [28] Lin J, Yuan X C, Tao S H, et al. Variable-radius focused optical vortex with suppressed sidelobes.[J]. Optics Letters, 2006, 31(11):1600-1602.
    [29] Nndor Bokor, Iketaki Y. Laguerre-Gaussian radial Hilbert transform for edge-enhancement Fourier transform X-ray microscopy[J]. Optics Express, 2009, 17(7):5533-5539.
    [30] Qiu X, Li F, Zhang W, et al. Spiral phase contrast imaging in nonlinear optics:Seeing phase objects using invisible illumination[J]. Optica, 2018, 5(2):208.
    [31] Shibiao W, Jing B, Siwei Z, et al. Image edge-enhancement in optical microscopy with a phase mismatched spiral phase plate[J]. Chinese Optics Letters, 2011, 9(3):29-32.
    [32] Sharma M, Joseph J, Senthilkumaran P. Selective edge enhancement using shifted anisotropic vortex filter[J]. Journal of Optics, 2013, 42(1):1-7.
    [33] Sharma M K, Joseph J, Senthilkumaran P. Effect of aberrations in vortex spatial filtering[J]. Optics Lasers in Engineering, 2012, 50(11):1501-1507.
    [34] Jesacher A, Frhapter S, Bernet S, et al. Shadow effects in spiral phase contrast microscopy[J]. Physical Review Letters, 2005, 94(23):233902.
    [35] Teich M, Mattern M, Sturm J, et al. Spiral phase mask shadow-imaging for 3D-measurement of flow fields[J]. Optics Express, 2016, 24(24):27371-27381.
    [36] Gozali R, Nguyen T A, Bendau E, et al. Compact OAM microscope for edge enhancement of biomedical and object samples[J]. Review of Scientific Instruments, 2017, 88(9):093701.
    [37] Ram B S B, Senthilkumaran P, Sharma A. Polarization-based spatial filtering for directional and nondirectional edge enhancement using an S-waveplate[J]. Applied Optics, 2017, 56:3171-3178.
    [38] Davis J A, Mcnamara D E, Cottrell D M, et al. Image processing with the radial Hilbert transform:theory and experiments.[J]. Optics Letters, 2000, 25(2):99-101.
    [39] Guo C S, Liu X, He J L, et al. Optimal annulus structures of optical vortices[J]. Optics Express, 2004, 12(19):4625-4634.
    [40] Guo C S, Liu X, Ren X Y, et al. Optimal annular computer-generated holograms for the generation of optical vortices[J]. Journal of the Optical Society of America A, 2005, 22(2):385.
    [41] Guo C S, Han Y J, Xu J B, et al. Radial Hilbert transform with Laguerre-Gaussian spatial filters[J]. Optics Letters, 2006, 31(10):1394-1396.
    [42] Chen J, Yuan X C, Zhao X, et al. Generalized approach to modifying optical vortices with suppressed sidelobes using Bessel-like functions[J]. Optics Letters, 2009, 34(21):3289-3291.
    [43] Wei S B, Zhu S W, Yuan X C. Image edge enhancement in optical microscopy with a Bessel-like amplitude modulated spiral phase filter[J]. Journal of Optics, 2011, 13(10):219-224.
    [44] Zhou Y, Feng S, Nie S, et al. Image edge enhancement using airy spiral phase filter.[J]. Optics Express, 2016, 24(22):25258.
    [45] Situ G, Pedrini G, Osten W. Spiral phase filtering and orientation-selective edge detection/enhancemen[J]. Journal of the Optical Society of America A, 2009, 26(8):1788.
    [46] Joshi M, Shakher C, Singh K. Image encryption and decryption using fractional Fourier transform and radial Hilbert transform[J]. Optics and Lasers in Engineering, 2008, 46(7):522-526.
    [47] Zhou Y, Feng S, Nie S, et al. Anisotropic edge enhancement with spiral zone plate under femtosecond laser illumination[J]. Applied Optics, 2017, 56(10):2641.
    [48] Wang J, Zhang W, Qi Q, et al. Gradual edge enhancement in spiral phase contrast imaging with fractional vortex filters[J]. Scientific Reports, 2015, 5:15826.
    [49] Sharma M K, Joseph J, Senthilkumaran P. Selective edge enhancement using anisotropic vortex filter[J]. Applied Optics, 2011, 50(27):5279-5286.
    [50] Sharma M K, Joseph J, Senthilkumaran P. Directional edge enhancement using superposed vortex filter[J]. Optics Laser Technology, 2014, 57:230-235.
    [51] Li X, Cao Y, Gu M. Superresolution-focal-volume induced 30 Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters, 2011, 36(13):2510-2512.
    [52] Yu W, Ji Z, Dong D, et al. Super-resolution deep imaging with hollow Bessel beam STED microscopy[J]. Laser Photonics Reviews, 2016, 10(1):147-152.
    [53] Xu-Zhen G, Yue P, Meng-Dan Z, et al. Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model[J]. Optics Express, 2018, 26(2):1597-1614.
    [54] Pan Y, Li Y N, Ren Z C, et al. Parabolic-symmetry vector optical fields and their tightly focusing properties[J]. Physical Review A, 2014, 89(3):035801.
    [55] Pan Y, Li Y, Li S M, et al. Vector optical fields with bipolar symmetry of linear polarization[J]. Optics Letters, 2013, 38(18):3700-3703.
    [56] Lerman G M, Levy U. Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization[J]. Optics Letters, 2007, 32(15):2194-2196.
    [57] Lerman G M, Stern L, Levy U. Generation and tight focusing of hybridly polarized vector beams[J]. Optics Express, 2010, 18(26):27650-27657.
    [58] Pan Y, Gao X Z, Cai M Q, et al. Fractal vector optical fields[J]. Optics Letters, 2016, 41:3161-3164.
    [59] Han L, Liu S, Li P, et al. Managing focal fields of vector beams with multiple polarization singularities[J]. Applied Optics, 2016, 55(32):9049-9053.
    [60] Pan Y, Li Y N, Ren Z C, et al. Parabolic-symmetry vector optical fields and their tightly focusing properties[J]. Physical Review A, 2014, 89(3):035801.
    [61] Pan Y, Li Y N, Li S M, et al. Elliptic-symmetry vector optical fields[J]. Optics Express, 2014, 22(16):19302-19313.
    [62] Pan Y, Li Y, Li S M, et al. Vector optical fields with bipolar symmetry of linear polarization[J]. Optics Letters, 2013, 38(18):3700-3703.
    [63] Gao X Z, Pan Y, Cai M Q, et al. Hyperbolic-symmetry vector fields[J]. Optics Express, 2015, 23(25):32238-32252.
    [64] Chen H, Zheng Z, Zhang B F, et al. Polarization structuring of focused field through polarization-only modulation of incident beam[J]. Optics Letters, 2010, 35(16):2825-2827.
    [65] Chen Z, Zeng T, Ding J. Reverse engineering approach to focus shaping[J]. Optics Letters, 2016, 41(9):1929-1932.
    [66] Lerman G M, Levy U. Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization[J]. Optics Letters, 2007, 32(15):2194-2196.
    [67] Lerman G M, Lilach Y, Levy U. Demonstration of spatially inhomogeneous vector beams with elliptical symmetry[J]. Optics Letters, 2009, 34(11):1669-1671.
    [68] Kozawa Y, Sato S. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams[J]. Optics Express, 2010, 18(10):10828-10833.
    [69] Kawauchi H, Yonezawa K, Kozawa Y, et al. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam[J]. Optics Letters, 2007, 32(13):1839-1841.
    [70] Zhan Q. Trapping metallic Rayleigh particles with radial polarization[J]. Optics Express, 2004,12(15):3377-3382.
    [71] Wang X L, Chen J, Li Y N, et al. Optical orbital angular momentum from the curl ofpolarization[J]. Physical Review Letters, 2010, 105(25):253602.
    [72] Xu D, Gu B, Rui G, et al. Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors[J]. Optics Express, 2016, 24(4):4177-4186.
    [73] Wang X L, Li Y, Chen J, et al. A new type of vector fields with hybrid states of polarization[J]. Optics Express, 2010, 18(10):10786-10795.
    [74] Li L, Chang C, Yuan X, et al. Generation of optical vortex array along arbitrary curvilinear arrangement[J]. Optics Express, 2018, 26(8):9798.
    [75] Li L, Chang C, Yuan C, et al. High efficiency generation of tunable ellipse perfect vector beams[J]. Photonics Research, 2018, 6(12):1116-1123.
    [76] Li Delin, Feng Shaotong, Nie Shouping, et al. Generation of arbitrary perfect Poincar beams[J]. Journal of Applied Physics, 2019, 125:073105.
    [77] Gu Fengyan, Lin L, Chang Chenliang, et al. Generation offractional ellipse perfect vector beams[J]. Optics Communications, 2019, 443:44-47.
    [78] Li Delin, Chang Chenliang, Nie Shouping, et al. Generation of elliptic perfect optical vortex and elliptic perfect vector beam by modulating the dynamic and geometric phase[J]. Applied Physics Letters, 2018, 113:121101.
    [79] Liu Yuanyuan, Liu Zhenxing, Zhou Junxiao, et al. Measurements of Pancharatnam-Berry phase in mode transformations on hybrid-order Poincar sphere[J]. Optics Letters, 2017, 42(17):3447-3450.
    [80] Luo H, Zhou J, Wen S, et al. Higher-order laser mode converters with dielectric metasurfaces[J]. Optics Letters, 2015, 40(23):5506-5509.
    [81] Milione G, Evans S, Nolan D A, et al. Higher order Pancharatnam-Berry phase and the angular momentum of light[J]. Physical Review Letters, 2012, 108(19):190401.
    [82] Han Y J, Guo C S, Rong Z Y, et al. Radial Hilbert transform with the spatially variable half-wave plate[J]. Optics Letters, 2013, 38(23):5169-5171.
    [83] Bhargava Ram B S. Paramasivam Senthil-kumaran. Edge enhancement by negative Poincare-Hopf index filters[J]. Optics Letters, 2018, 43(8):1830-1833.
    [84] Zhang B, Chen Z, Sun H, et al. Vectorial optical vortex filtering for edge enhancement[J]. Journal of Optics, 2016, 18(3):035703.
    [85] Li Delin, Feng Shaotong, Nie Shouping, et al. Scalar and vectorial vortex filtering based on geometric phase modulation with a Q-plate[J]. Journal of Optics, 2019, 21(6):065702.
  • [1] 李阳, 范晨晨, 郝修路, 马小雅, 姚天甫, 许将明, 曾祥龙, 周朴.  高功率涡旋拉曼光纤激光器 . 红外与激光工程, 2023, 52(6): 20230292-1-20230292-6. doi: 10.3788/IRLA20230292
    [2] 王拯洲, 段亚轩, 王力, 李刚, 郭嘉富.  基于旁瓣光束衍射反演的远场测量旁瓣波峰参数检测方法 . 红外与激光工程, 2023, 52(1): 20220281-1-20220281-17. doi: 10.3788/IRLA20220281
    [3] 王嘉琦, 许良, 常亮.  利用变形镜抑制光纤模态噪声 . 红外与激光工程, 2022, 51(10): 20210763-1-20210763-7. doi: 10.3788/IRLA20210763
    [4] 任元, 吴昊, 王琛, 刘政良, 刘通, 熊振宇.  量子涡旋陀螺若干关键参数的仿真计算(特邀) . 红外与激光工程, 2022, 51(4): 20220004-1-20220004-10. doi: 10.3788/IRLA20220004
    [5] 沙启蒙, 王卫杰, 刘通, 刘政良, 邱松, 任元.  涡旋光平衡探测系统转速测量精度与信噪比分析(特邀) . 红外与激光工程, 2021, 50(9): 20210616-1-20210616-9. doi: 10.3788/IRLA20210616
    [6] 丁友, 丁源圣, 邱松, 刘通, 任元.  涡旋光任意入射条件下的旋转物体转速探测(特邀) . 红外与激光工程, 2021, 50(9): 20210451-1-20210451-7. doi: 10.3788/IRLA20210451
    [7] 周伦滨, 冯凯, 王冬, 徐斌.  缺陷镜技术直接产生高功率高阶涡旋激光研究(特邀) . 红外与激光工程, 2021, 50(9): 20210408-1-20210408-7. doi: 10.3788/IRLA20210408
    [8] 王琛, 任元, 吴昊, 邱松.  涡旋光束制备及其在惯性测量领域的研究进展(特邀) . 红外与激光工程, 2021, 50(9): 20200463-1-20200463-15. doi: 10.3788/IRLA20200463
    [9] 杨苏辉, 廖英琦, 林学彤, 刘欣宇, 齐若伊, 郝燕.  涡旋光场在强散射环境中的应用 . 红外与激光工程, 2021, 50(6): 20211040-1-20211040-7. doi: 10.3788/IRLA20211040
    [10] 吕浩然, 白毅华, 叶紫微, 董淼, 杨元杰.  利用超表面的涡旋光束产生进展(特邀) . 红外与激光工程, 2021, 50(9): 20210283-1-20210283-16. doi: 10.3788/IRLA20210283
    [11] 武军安, 郭锐, 刘荣忠, 柯尊贵, 赵旭.  边缘区域约束的导向滤波深度像超分辨率重建算法 . 红外与激光工程, 2021, 50(1): 20200081-1-20200081-11. doi: 10.3788/IRLA20200081
    [12] 赵冬娥, 王思育, 马亚云, 张斌, 李诺伦, 李沅, 褚文博.  基于涡旋光与球面波干涉的微位移测量研究 . 红外与激光工程, 2020, 49(4): 0413005-0413005-6. doi: 10.3788/IRLA202049.0413005
    [13] 王琛, 刘通, 邵琼玲, 任元, 苗继松.  多通螺旋相位板的涡旋光拓扑荷数4重加倍 . 红外与激光工程, 2018, 47(9): 918008-0918008(6). doi: 10.3788/IRLA201847.0918008
    [14] 靳龙, 张兴强, 熊永臣, 付艳华.  艾里高斯涡旋光束正负交变介质中的光波演变 . 红外与激光工程, 2018, 47(10): 1006007-1006007(9). doi: 10.3788/IRLA201847.1006007
    [15] 尹红飞, 郭亮, 周煜, 孙剑锋, 曾晓东, 唐禹, 邢孟道.  基于改进SVA和压缩感知的SAL旁瓣抑制算法 . 红外与激光工程, 2018, 47(12): 1230005-1230005(8). doi: 10.3788/IRLA201847.1230005
    [16] 高春清, 张世坤, 付时尧, 胡新奇.  涡旋光束的自适应光学波前校正技术 . 红外与激光工程, 2017, 46(2): 201001-0201001(6). doi: 10.3788/IRLA201746.0201001
    [17] 杜立峰, 肖谦裔, 张蓉竹.  涡旋光辐照多层介质膜温升的模拟 . 红外与激光工程, 2016, 45(7): 721001-0721001(5). doi: 10.3788/IRLA201645.0721001
    [18] 许轰烈, 陈钱, 顾国华, 张玉珍.  利用导向滤波的宽动态范围图像增强技术 . 红外与激光工程, 2015, 44(12): 3843-3849.
    [19] 朱艳英, 姚文颖, 李云涛, 魏勇, 王锁明.  计算全息法产生涡旋光束的实验 . 红外与激光工程, 2014, 43(12): 3907-3911.
    [20] 刘磊, 沈宏海, 张葆.  卡尔曼滤波器在抑制力矩扰动中的应用 . 红外与激光工程, 2014, 43(7): 2240-2244.
  • 加载中
计量
  • 文章访问数:  685
  • HTML全文浏览量:  128
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-05
  • 修回日期:  2019-05-03
  • 刊出日期:  2019-06-25

基于涡旋滤波的图像边缘增强研究进展

doi: 10.3788/IRLA201948.0603015
    作者简介:

    顾忠政(1994-),男,硕士生,主要从事边缘增强、光场调控方面的研究。Email:guzhongzheng1994@163.com

基金项目:

国家重点研发计划(2017YFB0503505);国家自然科学基金(NSFC)(61775097,61575095);教育部虚拟地理环境重点实验室(南京师范大学)开放基金(2017VGE02)

  • 中图分类号: TP391

摘要: 作为图像处理的一个重要手段,边缘增强技术对振幅型和相位型物体成像有着重要的作用。而基于径向希尔伯特变换的涡旋滤波技术因其能够实现各向同性边缘增强倍受关注,但传统的涡旋滤波由于中心奇点和锐利边缘引起的衍射会造成背景噪声的加剧和对比度的降低。近年来众多课题组针对涡旋滤波旁瓣抑制提出了种类各异的新型涡旋滤波器,此外基于涡旋滤波的各向同性和各向异性边缘增强技术也得到了迅速发展。文中扼要地总结了近年来几种抑制涡旋旁瓣的方法,包括拉盖尔高斯振幅调制、贝塞尔振幅调制、艾里振幅调制,并从标量涡旋滤波和矢量涡旋滤波两个方面分别综述了各向同性和各向异性边缘增强的实现方法与研究进展。

English Abstract

参考文献 (85)

目录

    /

    返回文章
    返回