留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

放大同轴全息图压缩传感层析重建

于瀛洁 林星羽 伍小燕

于瀛洁, 林星羽, 伍小燕. 放大同轴全息图压缩传感层析重建[J]. 红外与激光工程, 2019, 48(6): 603017-0603017(7). doi: 10.3788/IRLA201948.0603017
引用本文: 于瀛洁, 林星羽, 伍小燕. 放大同轴全息图压缩传感层析重建[J]. 红外与激光工程, 2019, 48(6): 603017-0603017(7). doi: 10.3788/IRLA201948.0603017
Yu Yingjie, Lin Xingyu, Wu Xiaoyan. Tomographic reconstruction of magnified in-line hologram based on compressive sensing[J]. Infrared and Laser Engineering, 2019, 48(6): 603017-0603017(7). doi: 10.3788/IRLA201948.0603017
Citation: Yu Yingjie, Lin Xingyu, Wu Xiaoyan. Tomographic reconstruction of magnified in-line hologram based on compressive sensing[J]. Infrared and Laser Engineering, 2019, 48(6): 603017-0603017(7). doi: 10.3788/IRLA201948.0603017

放大同轴全息图压缩传感层析重建

doi: 10.3788/IRLA201948.0603017
基金项目: 

国家自然科学基金面上项目(51775326)

详细信息
    作者简介:

    于瀛洁(1969-),女,研究员,博士,主要从事光学测量方面的研究。Email:yingjieyu@staff.shu.edu.cn

    通讯作者: 伍小燕(1981-),女,讲师,博士,主要从事全息测量方面的研究。Email:orchis_2005@163.com
  • 中图分类号: O436

Tomographic reconstruction of magnified in-line hologram based on compressive sensing

  • 摘要: 文中对放大方式下同轴全息图压缩传感重建开展了实验研究,目的是实现分层物体放大方式下的同轴全息图的层析重建。首先,对同轴全息图压缩传感重建进行了理论介绍,并给出了实现步骤,包括全息图频域减采样模式、两步迭代算法流程等;其次,建立了点源放大同轴全息图记录实验系统和显微物镜放大同轴全息图记录实验系统,以双层样本为例开展了实验工作,所记录的同轴全息图基于压缩传感理论进行了层析重建,同时基于传统的卷积算法也进行了反衍射重建。实验结果表明:两种放大方式下获得的全息图,通过压缩传感层析重建技术能够实现物体的层析重建,并且比传统卷积反衍射重建具有更好的结果,显示了压缩传感层析重建的能力和优势。
  • [1] David J B, Choi K, Daniel L M, et al. Compressive holography[J]. Optics Express, 2009, 17(15):13040-13049.
    [2] Marks D L, Brady D J, Choi K, et al. Experimental demonstrations of compressive holography[C]//Computational Optical Sensing Imaging, 2009:CThA6.
    [3] Choi K, Horisaki R, Hahn J, et al. Compressive holography of diffuse objects[J]. Applied Optics, 2010, 49(34):1-10.
    [4] Lim S, Marks D L, Brady D J. Sampling and processing for compressive holography[J]. Applied Optics, 2011, 50(34):75-86.
    [5] Hahn J, Lim S, Choi K, et al. Compressive holographic microscopy[C]//Biomedical Optics, 2010:JMA1.
    [6] Hahn J, Lim S, Choi K, et al. Video-rate compressive holographic microscopic tomography[J]. Optics Express, 2011, 19(8):72-89.
    [7] Fernandezcull C, Brady D, Wikner D A, et al. Sparse Fourier sampling in millimeter-wave compressive holography[J]. Digital Holography and Three-Dimensional Imaging, 2010, 49(19):14-19.
    [8] Cull C F, Wikner D A, Mait J N, et al. Millimeter-wave compressive holography[J]. Applied Optics, 2010, 49(19):67-82.
    [9] Rivenson Y, Stern A. Compressive sensing techniques in holography[C]//Workshop on Information Optics, 2011:1-2.
    [10] Rivenson Y, Stern A, Rosen J. Reconstruction guarantees for compressive tomographic holography[J]. Optics Letters, 2013, 38(14):2509-2511.
    [11] Rivenson Y, Stern A, Javidi B. Overview of compressive sensing techniques applied in holography[J]. Applied Optics, 2013, 52(1):423-432.
    [12] Rivenson Y, Stern A. What is the reconstruction range for compressive fresnel holography[C]//Computational Optical Sensing Imaging, 2011:CWB6.
    [13] Rivenson Y, Rot A, Balber S, et al. Compressive fresnel holography for object reconstruction through an occluding plane[C]//Digital Holography Three-dimensional Imaging, 2012:DW4C7.
    [14] Rivenson Y, Stern A, Rosen J. Compressive multiple view projection incoherent holography[J]. Optics Express, 2011, 19(7):6109-6118.
    [15] Marim M M, Angelini E, Olivo-Marin J C, et al. Off-axis compressed holographic microscopy in low-light conditions[J]. Optics Letters, 2011, 36(1):79-81.
    [16] Clemente P, Durn V, Tajahuerce E, et al. Compressive holography with a single-pixel detector[J]. Optics Letters, 2013, 38(14):2524.
    [17] Weng J, Clark D C, Kim M K. Compressive sensing sectional imaging for single-shot in-line self-interference incoherent holography[J]. Optics Communications, 2016, 366:88-93.
    [18] Zhang W H, Cao L C, Brady D J, et al. Twin-image-free holography:A compressive sensing approach[J]. Physical Review Letter, 2018, 121(9):093902.
    [19] Jianshe M A, Feipeng X, Ping S U. Study on compressive sensing phase-shifting digital holography[J]. Semiconductor Optoelectronics, 2013, 34(1):130-133.
    [20] Wu Yingchun, Wu Xuecheng, Wang Zhihua, et al. Reconstruction of digital inline hologram with compressed sensing[J]. Acta Optica Sinica, 2011, 31(11):76-81.
    [21] Candes E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12):4203-4215.
    [22] Sun Xikang, Yu Yingjie, Wu Xiaoyan, et al. Reconstruction of multilayer samples by in-line compressive holography[J]. Acta Metrologica Sinica, 2017, 38(6):686-689.
    [23] Wu Xiaoyan, Bai Yuewei, Nie Li, et al. The improvement of in-line compressive holographic reconstruction quality based on the method of focusing[J]. Shanghai Polytechnic University, 2016, 33(4):320-325.
    [24] Xiao X W, Yu Y J, Zhou W J. Solving inverse problems for off-axis holography using Twist[C]//Proc of SPIE, 2013, 8769:87690.
    [25] Weng Jiawen, Li Hai, Yang Chuping, et al. Reconstruction of off-axis fresnel hologram by compressive sensing[J]. Opto-Electronic Engineering, 2015, 42(1):32-38. (in Chinese)
    [26] Yang Chanxia, Zhong Ting, Li Yuying, et al. The compression application research of phase-shift digital hologram image based on compressed sensing[J]. Laser Journal, 2016, 37(3):42-45
    [27] Wan Y, Man T, Wu F, et al. Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing[J]. Optics and Lasers in Engineering, 2016, 86(1):38-43.
    [28] Clemente P, Durn V. Compressive holography with a single-pixel detector[J]. Optics Letters, 2013, 7:14-18.
    [29] Hu Youjun, Zhou Xin, Yue Jianming, et al. Single pixel fourier hologram imaging system based on compressive sensing[J]. Laser Journal, 2016, 37(7):7-10.
    [30] Weng J, Clark D C, Kim M K. Compressive sensing sectional imaging for single-shot in-line self-interference incoherent holography[J]. Optics Communications, 2016, 366(1):88-93.
    [31] Weng Jiawen, Qin Yi, Yang Chuping, et al. Reconstruction of single low-coherence digital hologram by compressive sensing[J]. Laser Optoelectronics Progress, 2015, 52(10):100901. (in Chinese)
    [32] Weng Jiawen, Yang Chuping, Li Hai. Self-interference incoherent digital holography by compressive sensing[J]. Acta Optica Sinica, 2016, 36(2):0209001.
    [33] Zhang Cheng, Shen Chuan, Cheng Hong, et al. Compressed reconstruction of color holography[J]. Acta Automatica Sinica, 2015, 41(2):419-427.
    [34] Fan W, Wan Y H, Man T L, et al. Compressive holographic imaging by self-interference digital holography[J]. Digital Holography and 3D Imaging, 2015, 70:22-2F5.
    [35] Sun Aqian, Zhou Dingfu, Yuan Sheng, et al. Optical scanning holography based on compressive sensing using a digital micro-mirror device[J]. Optics Communications, 2016, 385(15):19-24.
    [36] Joonku H, Sehoon L, Kerkil C, et al. Video-rate compressive holographic microscopic tomography[J]. Optics Express, 2011, 19(8), 7289-7298.
    [37] Logan W, Georges N, Partha P B. Digital tomographic compressive holographic reconstruction of three-dimensional objects in transmissive and reflective geometries[J]. Applied Optics, 2013, 52(8):1702-1710.
    [38] Li Jun, Pan Yangyang, Li Jiaosheng, et al. Compressive holographic imaging based on single in-line hologram and superconducting nanowire single-photon detector[J]. Optics Communications, 2015, 355:326-330.
    [39] Clment R, Brenden S N, Hans J K. Tomography by point source digital holographic microscopy[J]. Applied Optics, 2014, 53(16):3520-3527.
    [40] Joonku H, Sehoon L, Kerkil C, et al. Holographic microscopy[J]. Optical Society of America, 2009, 17(6):90-93.
    [41] Xiao X W, Yu Y J, Zhou W J, et al. 4f amplified in-line compressive holography[J]. Optics Express, 2014, 22(17):19860-19872.
    [42] Bioucas J M, Figueiredo M A T. A new TwIST:Two-step iterative shrinkage/thresholding algorithms for imaging restoration[J]. IEEE Transactions on Image Processing, 2007, 16:2992-3004.
    [43] Wang Z, Arce G R. Variable density compressed image sampling[J]. IEEE Trans Image Process, 2010, 19(1):264-270.
    [44] Wu Xiaoyan. Study of digital holographic tomography based on compressive sensing[D]. Shanghai:Shanghai University, 2015. (in Chinese)
  • [1] 刘敬, 金伟其, 阙开良.  一种基于重叠因子的同轴警戒激光雷达动态范围压缩方法 . 红外与激光工程, 2023, 52(10): 20230027-1-20230027-10. doi: 10.3788/IRLA20230027
    [2] 孙茜, 薛庆生, 张冬雪, 白皓轩.  水下目标物三维激光重建方法研究 . 红外与激光工程, 2022, 51(8): 20210693-1-20210693-7. doi: 10.3788/IRLA20210693
    [3] 孙旭旦, 吴清, 赵春艳, 张满囤.  语义增强引导特征重建的遮挡行人检测 . 红外与激光工程, 2022, 51(9): 20210924-1-20210924-10. doi: 10.3788/IRLA20210924
    [4] 谢冰, 万淑慧, 殷云华.  基于改进稀疏表示正则化的SR重建算法 . 红外与激光工程, 2022, 51(3): 20210468-1-20210468-10. doi: 10.3788/IRLA20210468
    [5] 国成立, 郑德康, 朱德燕, 杨晓飞, 李元正, 张健, 赵烈烽.  混合型计算全息图检测低反射率非球面(特邀) . 红外与激光工程, 2022, 51(9): 20220547-1-20220547-7. doi: 10.3788/IRLA20220547
    [6] 刘鹏飞, 赵怀慈, 李培玄.  对抗网络实现单幅RGB重建高光谱图像 . 红外与激光工程, 2020, 49(S1): 20200093-20200093. doi: 10.3788/IRLA20200093
    [7] 范文强, 王志臣, 陈宝刚, 陈涛, 安其昌.  自适应光学相干层析在视网膜高分辨成像中的应用 . 红外与激光工程, 2020, 49(10): 20200333-1-20200333-13. doi: 10.3788/IRLA20200333
    [8] 王子涵, 张立, 周博睿.  基于激光回馈共聚焦的层析成像系统 . 红外与激光工程, 2020, 49(8): 20190541-1-20190541-8. doi: 10.3788/IRLA20190541
    [9] 汪侃, 龚俊, 魏敬和, 朱策, 刘凯.  邻图配对式运动恢复结构的欧式三维重建 . 红外与激光工程, 2020, 49(6): 20200078-1-20200078-8. doi: 10.3788/IRLA20200078
    [10] 伍小燕, 于瀛洁, 白跃伟, 聂黎, 刘凯, 潘芳煜, 王小刚.  基于频域变密度减采样的无放大同轴全息图的压缩传感层析重建 . 红外与激光工程, 2020, 49(S1): 20190500-20190500. doi: 10.3788/IRLA20190500
    [11] 宋俊玲, 饶伟, 王广宇, 辛明原.  燃烧流场温度二维重建多吸收谱线重建方法 . 红外与激光工程, 2019, 48(3): 306004-0306004(7). doi: 10.3788/IRLA201948.0306004
    [12] 赵楠翔, 胡以华.  激光反射层析成像相位恢复算法研究 . 红外与激光工程, 2019, 48(10): 1005005-1005005(7). doi: 10.3788/IRLA201948.1005005
    [13] 谢冰, 段哲民, 马鹏阁, 陈宇.  动态金字塔模型的红外图像SR重建 . 红外与激光工程, 2018, 47(1): 126001-0126001(6). doi: 10.3788/IRLA201847.0126001
    [14] 王忠良, 冯文田, 粘永健.  结合光谱解混与压缩感知的高光谱图像有损压缩 . 红外与激光工程, 2018, 47(S1): 189-196. doi: 10.3788/IRLA201847.S126003
    [15] 任姣姣, 李丽娟, 张丹丹, 乔晓利.  太赫兹时域光谱反射式层析成像技术 . 红外与激光工程, 2018, 47(2): 225002-0225002(6). doi: 10.3788/IRLA201847.0225002
    [16] 顾华荣.  计算全息三维显示的数据压缩编码技术 . 红外与激光工程, 2018, 47(6): 603006-0603006(6). doi: 10.3788/IRLA201847.0603006
    [17] 刘国忠, 李萍.  光学相干层析技术微流场三维可视化测速方法 . 红外与激光工程, 2015, 44(1): 273-278.
    [18] 田爱玲, 刘婷, 刘剑, 刘丙才, 王红军.  单幅干涉条纹图的高精度波面重建技术 . 红外与激光工程, 2015, 44(4): 1203-1207.
    [19] 李运达, 李琦, 刘正君, 王骐.  太赫兹计算机辅助层析图像重构算法仿真研究 . 红外与激光工程, 2013, 42(5): 1228-1235.
    [20] 李泽, 王民钢, 刘小华, 赵跃进, 张存林.  基于压缩传感的太赫兹成像 . 红外与激光工程, 2013, 42(6): 1523-1527.
  • 加载中
计量
  • 文章访问数:  626
  • HTML全文浏览量:  81
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-10
  • 修回日期:  2019-02-20
  • 刊出日期:  2019-06-25

放大同轴全息图压缩传感层析重建

doi: 10.3788/IRLA201948.0603017
    作者简介:

    于瀛洁(1969-),女,研究员,博士,主要从事光学测量方面的研究。Email:yingjieyu@staff.shu.edu.cn

    通讯作者: 伍小燕(1981-),女,讲师,博士,主要从事全息测量方面的研究。Email:orchis_2005@163.com
基金项目:

国家自然科学基金面上项目(51775326)

  • 中图分类号: O436

摘要: 文中对放大方式下同轴全息图压缩传感重建开展了实验研究,目的是实现分层物体放大方式下的同轴全息图的层析重建。首先,对同轴全息图压缩传感重建进行了理论介绍,并给出了实现步骤,包括全息图频域减采样模式、两步迭代算法流程等;其次,建立了点源放大同轴全息图记录实验系统和显微物镜放大同轴全息图记录实验系统,以双层样本为例开展了实验工作,所记录的同轴全息图基于压缩传感理论进行了层析重建,同时基于传统的卷积算法也进行了反衍射重建。实验结果表明:两种放大方式下获得的全息图,通过压缩传感层析重建技术能够实现物体的层析重建,并且比传统卷积反衍射重建具有更好的结果,显示了压缩传感层析重建的能力和优势。

English Abstract

参考文献 (44)

目录

    /

    返回文章
    返回