留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用双Sagnac环滤波器的可切换多波长光纤激光器

朱可 裴丽 赵琦 解宇恒 常彦彪

朱可, 裴丽, 赵琦, 解宇恒, 常彦彪. 采用双Sagnac环滤波器的可切换多波长光纤激光器[J]. 红外与激光工程, 2020, 49(11): 20200047. doi: 10.3788/IRLA20200047
引用本文: 朱可, 裴丽, 赵琦, 解宇恒, 常彦彪. 采用双Sagnac环滤波器的可切换多波长光纤激光器[J]. 红外与激光工程, 2020, 49(11): 20200047. doi: 10.3788/IRLA20200047
Zhu Ke, Pei Li, Zhao Qi, Xie Yuheng, Chang Yanbiao. Switchable multi-wavelength fiber laser utilizing double Sagnac loop filter[J]. Infrared and Laser Engineering, 2020, 49(11): 20200047. doi: 10.3788/IRLA20200047
Citation: Zhu Ke, Pei Li, Zhao Qi, Xie Yuheng, Chang Yanbiao. Switchable multi-wavelength fiber laser utilizing double Sagnac loop filter[J]. Infrared and Laser Engineering, 2020, 49(11): 20200047. doi: 10.3788/IRLA20200047

采用双Sagnac环滤波器的可切换多波长光纤激光器

doi: 10.3788/IRLA20200047
详细信息
    作者简介:

    朱可(1993-),女,硕士生,主要从事光纤激光器等方面的研究。 Email:17120182@bjtu.edu.cn

    裴丽(1970-),女,教授,博士生导师,主要从事光纤通信、光纤激光器、光纤传感等方面的研究。Email:lipei@bjtu.edu.cn

  • 中图分类号: TN248.1

Switchable multi-wavelength fiber laser utilizing double Sagnac loop filter

  • 摘要: 提出了一种基于双Sagnac环滤波器的可切换多波长掺铒光纤激光器,该滤波器由基于保偏光纤和少模光纤的Sagnac环并联构成,结构简单,利用其梳状滤波特性,实现了掺铒光纤激光器的多波长输出。采用传输矩阵法详细分析了双Sagnac环的传输特性,进一步搭建了线性腔掺铒光纤激光器,实验中通过调节偏振控制器,改变腔内偏振态,在室温下得到稳定可切换的单、双、三波长激光输出,且激光器输出波长的位置可调。研究结果表明,输出激光波长的边模抑制比大于34 dB,稳定性测量中波长漂移量小于0.05 nm,具有良好的稳定性,可应用于波分复用及全光通信系统等领域。
  • 图  1  双Sagnac环滤波器示意图

    Figure  1.  Setup of double Sagnac loop filter

    图  2  基于双Sagnac环多波长光纤激光器原理图

    Figure  2.  Setup of the multi-wavelength fiber laser based on the double Sagnac loop

    图  3  单波长输出光谱图

    Figure  3.  Output spectra of single wavelength

    图  4  双波长输出光谱图

    Figure  4.  Output spectra of dual-wavelength

    图  5  双波长状态稳定性测量

    Figure  5.  Stability measurements of dual-wavelength

    图  6  双波长在27 min内(a)波长漂移, (b)功率波动测量

    Figure  6.  Measurements of (a) wavelength shift, (b) power fluctuation of double-wavelength in 27 min

    图  7  三波长输出光谱图

    Figure  7.  Output spectra of triple-wavelength

    图  8  三波长稳定性测量

    Figure  8.  Stability measurements of triple-wavelength

    图  9  三波长在27 min内(a)波长漂移,(b)功率波动测量

    Figure  9.  Measurements of (a) wavelength shift, (b) power fluctuation of triple-wavelength in 27 min

    图  10  可切换(a)四波长, (b)五波长, (c)六波长输出光谱

    Figure  10.  Output spectra of switchable (a) quadruple-wavelength, (b) five-wavelength, (c) six-wavelength

    图  11  可切换三波长输出光谱

    Figure  11.  Output spectra of switchable triple-wavelength

    图  12  可切换四波长输出光谱

    Figure  12.  Output spectra of switchable quadruple-wavelength

  • [1] Shi Junkai, Wang Guoming, Ji Rongyi, et al. Compact dual-wavelength continuous-wave Er-doped fiber laser [J]. Chinese Optics, 2019, 12(4): 810-819. doi:  10.3788/co.20191204.0810
    [2] Qian Lifen, Fen Dangqi, Xie Heng, et al. A novel tunable multi-wavelength Brillouin fiberlaser with switchable frequency spacing [J]. Optics Communications, 2015, 340: 74-79. doi:  10.1016/j.optcom.2014.11.091
    [3] Lin Zhen, Ren Guobin, Zheng Siwen, et al. Switchable multi-wavelength fiber laser based on cascade fiber tapers and phase modulator [J]. Infrared and Laser Engineering, 2014, 43(10): 3262-3268. doi:  10.3969/j.issn.1007-2276.2014.10.016
    [4] Zhao Xiaoli, Zhang Yumin, Song Yanming, et al. Switchable multi-wavelength fiber laser based on non-core fiber combing with polarization maintaining fiber [J]. Chinese Journal of Lasers, 2019, 46(2): 0201005. doi:  10.3788/CJL201946.0201005
    [5] Zhang Chenfeng, Sun Jiang, Jian Shuisheng. A new mechanism to suppress the homogeneous gain broadening for stable multi-wavelength erbium-doped fiber laser [J]. Optics Communications, 2013, 288: 97-100. doi:  10.1016/j.optcom.2012.10.004
    [6] Peng Wanjing, Liu Peng. Tunable dual-wavelength erbium-doped fiber lasers based on polarization-dependent MSM fiber filters [J]. Acta Physica Sinica, 2019, 68(15): 240-247.
    [7] Liu Z Y, Liu Y G, Du J B, et al. Tunable multiwavelength erbium-doped fiber laser with a polarization-maintaining photonic crystal fiber Sagnac loop filter [J]. Laser Physics Letters, 2018, 5(6): 446-448.
    [8] Zhou Ming, Luo Zhengqian, Cai Zhiping, et al. Switchable and tunable multiple-channel erbium-doped fiber laser using graphene-polymer nanocomposite and asymmetric two-stage fiber Sagnac loop filter [J]. Applied Optics, 2011, 50(18): 2940-2948. doi:  10.1364/AO.50.002940
    [9] Bian Siyuan, Ren Meiqi, Wei Li. A wavelength spacing switchable and tunable high-birefringence fiber loop mirror filter [J]. Microwave and Optical Technology Letters, 2014, 56(7): 1666-1670. doi:  10.1002/mop.28415
    [10] Cheng Jianjun, Zhang Liaolin, Ma Zhijun, et al. Tunable and switchable dual-wavelength Er-doped fiber ring laser using ASEs [J]. Optics Communications, 2014, 324: 202-204. doi:  10.1016/j.optcom.2014.03.053
    [11] Ding Zhenming, Wang Zhaokun, Zhao Chunliu, et al. Tunable erbium-doped fiber laser based on optical fiber Sagnac interference loop with angle shift spliced polarization maintaining fibers [J]. Optical Fiber Technology, 2018, 42: 1-5. doi:  10.1016/j.yofte.2018.02.006
    [12] Sun G, Tang H, Zhou Y, et al. Dual-wavelength switchable erbium-doped fiber ring laser based on merged Sagnac and intermodal interferences in Sagnac loop mirror [J]. Laser Physics, 2011, 21(1): 194-197. doi:  10.1134/S1054660X11010191
    [13] He Wei, Zhou Kangpeng, Zhang Wen, et al. Stable and tunable multi-wavelength erbium-doped fibre laser with cascaded Sagnac loops incorporating polarization-maintaining fibres [J]. Optoelectronics and Advanced Materials-Rapid Communications, 2018, 12(1-2): 1-7.
    [14] He Wei, Shangguan Chunmei, Zhu Lianqing, et al. Tunable and stable multi-wavelength erbium-doped fiber laser based on a double Sagnac comb filter with polarization-maintaining fibers [J]. Optik, 2017, 137: 254-261. doi:  10.1016/j.ijleo.2017.03.007
    [15] Chen Jing. Research of curvature and low-frequency acoustic wave sensor based on few-mode fiber and long-period fiber grating[D]. Wuhan: Huazhong University of Science and Technology, 2015: 22-23. (in Chinese)
    [16] Zhang Xin. Study on fiber laser and fiber sensor based on tunable Sagnac loop[D]. Shenzhen: Harbin Institute of Technology, 2016: 16-20. (in Chinese)
  • [1] 陈磊, 朱嘉婧, 李磐, 刘河山, 柯常军, 余锦, 罗子人.  DBR单纵模光纤激光器波长温度调谐 . 红外与激光工程, 2023, 52(4): 20220570-1-20220570-8. doi: 10.3788/IRLA20220570
    [2] 张奕, 侯玉斌, 张倩, 王璞.  基于四波混频效应的1.5 μm多波长单频光纤激光器(特邀) . 红外与激光工程, 2022, 51(6): 20220401-1-20220401-7. doi: 10.3788/IRLA20220401
    [3] 万颖超, 杨保来, 奚小明, 张汉伟, 叶云, 王小林.  不同泵浦波长光纤激光器模式不稳定效应对比 . 红外与激光工程, 2022, 51(4): 20210256-1-20210256-8. doi: 10.3788/IRLA20210256
    [4] 杨志勇, 宋俊辰, 蔡伟, 陆高翔, 罗李娜.  非通视方位传递系统中保偏光纤分析 . 红外与激光工程, 2022, 51(5): 20210315-1-20210315-9. doi: 10.3788/IRLA20210315
    [5] 孟祥瑞, 文瀚, 陈浩伟, 孙博, 陆宝乐, 白晋涛.  波长可切换窄线宽单频掺镱光纤激光器(特邀) . 红外与激光工程, 2022, 51(6): 20220325-1-20220325-8. doi: 10.3788/IRLA20220325
    [6] 何旭宝, 肖虎, 马鹏飞, 张汉伟, 王小林, 许晓军.  基于双色镜的2.3 kW光纤激光光束合成 . 红外与激光工程, 2021, 50(2): 20200385-1-20200385-7. doi: 10.3788/IRLA20200385
    [7] 王丽莎, 孙松松, 闫炜, 瞿娇娇, 王勇.  L波段可切换双波长高能量脉冲光纤激光器 . 红外与激光工程, 2021, 50(7): 20200370-1-20200370-5. doi: 10.3788/IRLA20200370
    [8] 程雪, 王建立, 刘昌华.  高能光纤激光器光束合成技术 . 红外与激光工程, 2018, 47(1): 103011-0103011(11). doi: 10.3788/IRLA201847.0103011
    [9] 马毅, 颜宏, 孙殷宏, 彭万敬, 李建民, 王树峰, 李腾龙, 王岩山, 唐淳, 张凯.  基于双光栅的光纤激光光谱合成关键技术研究进展(特邀) . 红外与激光工程, 2018, 47(1): 103002-0103002(14). doi: 10.3788/IRLA201847.0103002
    [10] 凌远达, 黄千千, 邹传杭, 闫志君, 牟成博.  基于45°倾斜光栅的重复频率可切换被动谐波锁模光纤激光器 . 红外与激光工程, 2018, 47(8): 803007-0803007(5). doi: 10.3788/IRLA201847.0803007
    [11] 裴丽, 王建帅, 郑晶晶, 宁提纲, 解宇恒, 何倩, 李晶.  空分复用光纤的特性及其应用研究 . 红外与激光工程, 2018, 47(10): 1002001-1002001(12). doi: 10.3788/IRLA201847.1002001
    [12] 赵润晗, 孟欣禹, 赵云鹤, 司晓龙, 刘云启.  消除模间干涉现象的光纤光栅模式转换器 . 红外与激光工程, 2018, 47(12): 1222001-1222001(7). doi: 10.3788/IRLA201847.1222001
    [13] 史伟, 房强, 李锦辉, 付士杰, 李鑫, 盛泉, 姚建铨.  激光雷达用高性能光纤激光器 . 红外与激光工程, 2017, 46(8): 802001-0802001(5). doi: 10.3788/IRLA201746.0802001
    [14] 王枫, 毕卫红, 付兴虎, 付广伟, 江鹏, 武洋, 王莹.  基于重叠光栅的双波长掺铒光子晶体光纤激光器 . 红外与激光工程, 2016, 45(8): 822001-0822001(5). doi: 10.3788/IRLA201645.0822001
    [15] 杨远洪, 刘硕, 陆林, 靳伟.  基于保偏光子晶体光纤Sagnac干涉仪的温度不敏感压力传感技术 . 红外与激光工程, 2016, 45(8): 802002-0802002(6). doi: 10.3788/IRLA201645.0802002
    [16] 刘振华, 冯迪, 杨德伟, 宋凝芳.  Panda型保偏光纤偏振轴检测技术 . 红外与激光工程, 2014, 43(10): 3388-3393.
    [17] 林桢, 任国斌, 郑斯文, 朱博枫, 彭万敬, 简水生.  基于光纤拉锥及相位调制的可切换多波长掺铒光纤激光器 . 红外与激光工程, 2014, 43(10): 3262-3268.
    [18] 鲁辉, 张立军, 吴桂波, 郑占旗, 冷永清.  新型数控光纤矢量和微波光子移相器 . 红外与激光工程, 2013, 42(5): 1247-1252.
    [19] 方秀丽, 童峥嵘, 曹晔, 杨秀峰.  采用F-P光纤环滤波器的窄线宽环形腔光纤激光器 . 红外与激光工程, 2013, 42(2): 329-333.
    [20] 杨远洪, 段纬倩, 高丽娟.  反射型保偏光纤温度传感器现场校准方法 . 红外与激光工程, 2012, 41(8): 2107-2111.
  • 加载中
图(12)
计量
  • 文章访问数:  722
  • HTML全文浏览量:  234
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-02
  • 修回日期:  2020-04-27
  • 刊出日期:  2020-11-25

采用双Sagnac环滤波器的可切换多波长光纤激光器

doi: 10.3788/IRLA20200047
    作者简介:

    朱可(1993-),女,硕士生,主要从事光纤激光器等方面的研究。 Email:17120182@bjtu.edu.cn

    裴丽(1970-),女,教授,博士生导师,主要从事光纤通信、光纤激光器、光纤传感等方面的研究。Email:lipei@bjtu.edu.cn

  • 中图分类号: TN248.1

摘要: 提出了一种基于双Sagnac环滤波器的可切换多波长掺铒光纤激光器,该滤波器由基于保偏光纤和少模光纤的Sagnac环并联构成,结构简单,利用其梳状滤波特性,实现了掺铒光纤激光器的多波长输出。采用传输矩阵法详细分析了双Sagnac环的传输特性,进一步搭建了线性腔掺铒光纤激光器,实验中通过调节偏振控制器,改变腔内偏振态,在室温下得到稳定可切换的单、双、三波长激光输出,且激光器输出波长的位置可调。研究结果表明,输出激光波长的边模抑制比大于34 dB,稳定性测量中波长漂移量小于0.05 nm,具有良好的稳定性,可应用于波分复用及全光通信系统等领域。

English Abstract

    • 多波长掺铒光纤激光器广泛应用于波分复用(Wavelength Division Multiplexing, WDM)通信系统、光纤光学传感、光学信号处理和微波信号产生等领域[1]。目前,已报道了多种实现多波长的方法:利用受激布里渊散射(Stimulated Brillouin Scattering, SBS)或四波混频(Four-wave Mixing, FWM)[2]等非线性效应、利用非线性光纤环形镜(Nonlinear Optical Loop Mirror, NOLM)或非线性偏振旋转(Nonlinear Polarization Rotation, NPR)[3]等强度相关的损耗机制、利用光纤布拉格光栅选频的方法,虽然这些方法可以获得稳定的多波长激光输出,但是谐振腔的结构往往比较复杂,插入损耗也比较大,难以同时满足结构简单、成本低等要求;还有利用偏振烧孔效应(Polarization Hole Burning, PHB)[4-5],通过调整偏振控制器(Polarization Controller, PC)改变谐振腔内偏振态而适当选择腔内损耗,从而实现多波长输出或者波长之间切换。

      由于掺铒光纤所固有的均匀展宽特性极易导致模式竞争,因此获得室温下稳定的多波长输出比较困难[6],其关键是抑制模式竞争。

      一般来说,稳定的多波长输出是通过抑制模式竞争机制和梳状滤波器相结合来实现的。常用的梳状滤波器包括马赫-曾德尔干涉滤波器,法布里-珀罗滤波器,双折射光纤(Lyot)滤波器,Sagnac环滤波器[7-9]等不同类型。Sagnac环滤波器由于具有低成本、低损耗、结构简单等优势,在多波长光纤激光器的设计中被广泛应用。

      近年来,许多学者提出了Sagnac环滤波器与抑制波长竞争机制结合的多波长掺铒光纤激光器。Cheng等将基于保偏光纤的Sagnac环滤波器加入环形腔中,实现了双波长的可切换输出,光信噪比大于28 dB[10];Ding等利用两段相同长度的保偏光纤以45°偏接构成Sagnac环滤波器,室温下通过调节偏振控制器可实现单波长输出[11];Sun等设计了一种基于高双折射少模光纤的Sagnac环滤波器,其传输特性依赖PC的状态,将此滤波器加入环形腔中,通过调整PC可以实现双波长激光输出[12];上述可切换多波长激光器均为单Sagnac环结构,而且可切换的波长数比较少。He等设计了一种基于级联双Sagnac环的可切换多波长掺铒光纤激光器,利用两段不同长度的保偏光纤构成级联双Sagnac环梳状滤波器,通过调节PC,可以得到五波长激光输出[13];He等设计了一种基于并联双Sagnac环的可切换多波长掺铒光纤激光器,利用两段不同长度的保偏光纤组成并联双Sagnac环作为梳状滤波器,通过调节PC,该激光器最多可得到四波长激光输出[14]。上述基于双Sagnac环的光纤激光器仍存在一定的不足,输出波长数量依然较少,且稳定性不高,限制了多波长掺铒光纤激光器的应用领域及应用范围。

      文中提出了一种具有多波长可切换特性的掺铒光纤激光器,基于多模干涉原理,利用保偏光纤和少模光纤组成双Sagnac环结构,该结构在C波段范围内具有梳状滤波特性。对其进行实验验证,通过调节双Sagnac环中的PC,可得到稳定可切换的单、双、三多波长激光输出,同时激光输出波长位置可调,该激光器输出波长最大数目为六波长。实验得到的SMSR大于34 dB,27 min内波长漂移量小于0.05 nm。与现有滤波器相比,该滤波器易于制作,具有结构简单、稳定性良好等优点,应用前景广泛。

    • 双Sagnac环滤波器结构如图1所示,由三个3 dB耦合器(OC),两个偏振控制器(PC),两段长度不同的保偏光纤(PMF)和少模光纤(FMF)组成。对于单个Sagnac环路,当入射光从1端口进入OC1后被分为两束光,一束光经过3端口沿顺时针(正向)传输,另一束光经过4端口沿逆时针(逆向)传输,然后分别通过PC和PMF(或FMF),最后回到耦合器相干输出。

      图  1  双Sagnac环滤波器示意图

      Figure 1.  Setup of double Sagnac loop filter

      当入射光经过3 dB耦合器OC时,根据光波导理论,OC1,OC2,OC3的传输矩阵为:

      $$ {T_{{\rm{OC}}}} = \frac{{\sqrt 2 }}{2}\left[ {\begin{array}{*{20}{c}} 1&j \\ j&1 \end{array}} \right] $$ (1)

      当正向传输光经过PMF时,由于其应力双折射效应,PMF传输矩阵为:

      $$ {T_{{\rm{PMF}}}} = \left[ {\begin{array}{*{20}{c}} 1&0 \\ 0&{{e^{j\dfrac{{2\pi L\Delta n}}{\lambda }}}} \end{array}} \right] $$ (2)

      式中:$\Delta n = \left| {{n_{\rm{f}}} - {n_{\rm{s}}}} \right|$为PMF快慢轴的有效折射率差;L为PMF的长度;$\lambda $为入射光的波长。

      FMF的模式在FMF中的传播速度不同,产生的相位延迟不同,故其传输矩阵[15]可以由相位延迟器表示:

      $$ {T_{{\rm{FMF}}}} = \left[ {\begin{array}{*{20}{c}} {{e^{{{ - j2\pi {n_{1{\rm{eff}}}}{L_{\rm{F}}}} / \lambda }}}}&0 \\ 0&{{e^{{{j2\pi {n_{2{\rm{eff}}}}{L_{\rm{F}}}} / \lambda }}}} \end{array}} \right] $$ (3)

      式中:${n_{1{\rm{eff}}}}$${n_{2{\rm{eff}}}}$分别为少模光纤中两个模式的等效折射率差;${L_{\rm{F}}}$为FMF的长度;$\lambda $为入射光的波长。

      当入射光经过PC1后,光的偏振方向会旋转$\theta $角度,故正向传输光经过PC时,其传输矩阵为:

      $$ {T_{{\rm{PC}}}} = \left[ {\begin{array}{*{20}{c}} {\cos \theta }&{\sin \theta } \\ {\sin \theta }&{ - \cos \theta } \end{array}} \right] $$ (4)

      光波在Sagnac环传输一周后,反向经过OC1的传输矩阵为其逆矩阵,即:

      $$ T_{{\rm{OC}}1}^{\rm{B}} = {\left( {{T_{{\rm{OC}}1}}} \right)^{ - 1}} $$ (5)

      同理PMF、FMF、PC的反向传输矩阵为其逆矩阵$T_{{\rm{PMF}}}^{\rm{B}}$$T_{{\rm{FMF}}}^{\rm{B}}$$T_{{\rm{PC}}}^{\rm{B}}$

      对于图1所示双Sagnac环路,1端口光场为${E_1}$,3、4端口光场为${E_3}$${E_4}$,可描述为:

      $$ \left[ {\begin{array}{*{20}{c}} {{E_3}} \\ {{E_4}} \end{array}} \right] = {T_{{\rm{OC1}}}}\left[ {\begin{array}{*{20}{c}} {{E_1}} \\ {{E_2}} \end{array}} \right] $$ (6)

      ${E_3}$${E_4}$被3 dB耦合器OC2和OC3分成相等的两束光,即当光正向从OC2和OC3传输时,有${E_5} = {E_6} = \dfrac{{{E_3}}}{2}$, ${E_7} = {E_8} = \dfrac{{{E_4}}}{2}$。光在双环内顺时针和逆时针传输一周后,端口5、6、7、8的光场为:

      $$ E_{\rm{5}}^{'} = T_{{\rm{PC}}2}^{\rm{B}}T_{{\rm{FMF}}}^{\rm{B}}{E_7} $$ (7)
      $$ E_{\rm{6}}^{'} = T_{{\rm{PC}}1}^{\rm{B}}T_{{\rm{PMF}}}^{\rm{B}}{E_8} $$ (8)
      $$ E_7^{'} = {T_{{\rm{FMF}}}}{T_{{\rm{PC}}2}}{E_5} $$ (9)
      $$ E_8^{'} = {T_{{\rm{PMF}}}}{T_{{\rm{PC}}1}}{E_6} $$ (10)

      光在双Sagnac环传输一周后,在耦合器OC2和OC3处相干输出的透射光场和反射光场分别为:

      $$ \left[ {\begin{array}{*{20}{c}} {{E_{{\rm{TOC}}2}}} \\ {{E_{{\rm{ROC}}2}}} \end{array}} \right] = T_{{\rm{OC}}2}^{\rm{B}}\left[ {\begin{array}{*{20}{c}} {E_5^{'}} \\ {E_6^{'}} \end{array}} \right] $$ (11)
      $$ \left[ {\begin{array}{*{20}{c}} {{E_{{\rm{TOC}}3}}} \\ {{E_{{\rm{ROC}}3}}} \end{array}} \right] = T_{{\rm{OC}}3}^{\rm{B}}\left[ {\begin{array}{*{20}{c}} {E_7^{'}} \\ {E_8^{'}} \end{array}} \right] $$ (12)

      因耦合器OC2和OC3的入射端均只使用一个端口,故对于OC1的端口3、4的逆向光场为:

      $$ E_3^{''} = {E_{{\rm{ROC}}2}} $$ (13)
      $$ E_4^{''} = {E_{{\rm{ROC}}3}} $$ (14)

      最后,滤波器透射光场和反射光场可以由下式表示:

      $$ \left[ {\begin{array}{*{20}{c}} {E_{\rm{T}}^{''}} \\ {E_{\rm{R}}^{''}} \end{array}} \right] = T_{{\rm{OC}}1}^{\rm{B}}\left[ {\begin{array}{*{20}{c}} {E_3^{''}} \\ {E_4^{''}} \end{array}} \right] $$ (15)

      其主要是PMF、FMF、PC和OC组合结果。

    • 基于双Sagnac环滤波器的可切换多波长掺铒光纤激光器的实验装置如图2所示。

      图  2  基于双Sagnac环多波长光纤激光器原理图

      Figure 2.  Setup of the multi-wavelength fiber laser based on the double Sagnac loop

      多波长光纤激光器为线性腔结构,主要由980 nm泵浦激光器,980/1550 nm波分复用器(WDM),一段4.8 m掺铒光纤(Nufern, EDFC-980-HP),双Sagnac环滤波器,一个环形器组成。双Sagnac环滤波器中的PMF长度为45 cm,FMF长度为4 m。WDM用于将泵浦光耦合到EDF中,EDF用于提供激光的线性增益,双Sagnac环和环行器构成该激光器的谐振腔。双Sagnac环梳状滤波器抑制由于掺铒光纤的均匀展宽效应引起的模式竞争,从而避免了在室温下不稳定的波长激射,实现多波长掺铒光纤激光器的稳定输出。通过调节PC可以改变EDF中不同波长的偏振状态[16],从而产生偏振相关损耗,引起偏振烧孔效应,PHB效应会平衡激光腔内的增益和损耗,影响波长输出。3 dB耦合器OC1的一个端口用作光纤激光器的输出。激光的输出波长由光谱分析仪(YOGAWA AQ6375, OSA)测量,分辨率为0.05 nm。

    • 实验中设置泵浦功率为300 mW,在室温条件下,通过控制三个PC的状态,可得到单波长激光输出。图3为单波长激光输出光谱,其中心波长为1 532.45 nm,SMSR为37.84 dB。在相同的泵浦功率下,通过调节双Sagnac环梳状滤波器中的PC可以得到双波长激光输出。

      图  3  单波长输出光谱图

      Figure 3.  Output spectra of single wavelength

      图4为双波长激光输出光谱,图4(a)中的输出激光波长为1 531.55 nm和1 532.36 nm,图4(b)中的输出激光波长为1 532.44 nm和1 533.25 nm,SMSR大于35 dB,最大峰值功率差为2.27 dB。

      图  4  双波长输出光谱图

      Figure 4.  Output spectra of dual-wavelength

      为研究该激光器在室温下的稳定性,在泵浦功率300 mW时,调整PC状态,出现中心波长为1 532.44 nm和1 533.25 nm的双波长,对双波长输出光谱进行重复扫描测量,监测双波长的稳定性。扫描间隔3 min,扫描9次,如图5所示。可以看出,在27 min内波长漂移和输出激光功率波动都没有明显的变化,输出波长相对稳定。

      图  5  双波长状态稳定性测量

      Figure 5.  Stability measurements of dual-wavelength

      测量了波长漂移和功率波动的具体变化,如图6所示。由图6(a)可知,1 532.44 nm和1 533.25 nm处波长漂移分别0.03 nm和0.02 nm;由图6(b)可知,1 532.44 nm和1 533.25 nm处功率波动分别为5.85 dB和2.67 dB。

      图  6  双波长在27 min内(a)波长漂移, (b)功率波动测量

      Figure 6.  Measurements of (a) wavelength shift, (b) power fluctuation of double-wavelength in 27 min

      保持泵浦功率不变,通过调节三个PC的偏振态,可以产生三波长的激光输出,如图7所示。其中心波长分别为1 531.64 nm、1 532.45 nm和1 533.24 nm,边模抑制比SMSR大于37 dB,最大峰值功率差为1.44 dB。为进一步测量该可切换多波长光纤激光器的稳定性,在27 min内对三波长输出光谱重复扫描,扫描间隔3 min,如图8所示。

      图  7  三波长输出光谱图

      Figure 7.  Output spectra of triple-wavelength

      图  8  三波长稳定性测量

      Figure 8.  Stability measurements of triple-wavelength

      分别测量了三波长波长漂移和峰值功率随时间变化的稳定性,结果如图9(a)(b)所示。实验结果表明,三波长输出相对稳定,在27 min内没有明显的波长偏移,由图9(a)图9(b)可知,1 531.64 nm,1 532.45 nm和1 533.24 nm处波长漂移分别0.05 nm,0.05 nm和0.18 nm;1 531.64 nm,1 532.45 nm和1 533.24 nm处功率波动分别为5.73 dB,3.98 dB和7.09 dB。

      图  9  三波长在27 min内(a)波长漂移,(b)功率波动测量

      Figure 9.  Measurements of (a) wavelength shift, (b) power fluctuation of triple-wavelength in 27 min

      可以看出,输出激光的数量越多,功率波动越明显,这主要是由于激光增益在不同波长上的竞争造成的,泵浦功率不稳定和外部环境对它也有一定的影响。需要注意的是,整个实验是在室温下进行的,虽然室温是浮动的,但由于实验结构中没有温敏器件和光纤,因此室温下的实验结果忽略了温度波动。

      最后,通过调整泵浦功率为300 mW时的三个PC,实现了具有四波长、五波长、六波长的可切换多波长掺铒光纤激光器,如图10所示。这三种输出波长的SMSR均大于34 dB,由图10(a)可以看出四波长的最大峰值功率差为2.62 dB,说明激射的四波长激光具有比较好的功率均匀性,由图10(b)和10(c)可知五波长和六波长最大峰值功率差分别为7.63 dB和4.70 dB。

      图  10  可切换(a)四波长, (b)五波长, (c)六波长输出光谱

      Figure 10.  Output spectra of switchable (a) quadruple-wavelength, (b) five-wavelength, (c) six-wavelength

      实验中发现,该激光器所能实现的波长数主要是由滤波器的EDF的增益范围和自由光谱范围(FSR)决定。EDF的增益范围增大,输出激光数量也会相对增加。而FSR越小,激光数量就越多,但过小的FSR会引起激光输出的不稳定。

      当输出波长为三波长或四波长时,进一步调整PC2和PC3,透射光的偏振状态发生改变,由于PHB效应的影响,不同波长位置的激光获得的增益也会改变。研究发现,该激光器三波长和四波长分别有不同的输出间隔,如图11(a)~11(c)图12(a)~12(e)所示,三波长有三种不同的输出模式,四波长有五种不同的输出模式。

      图  11  可切换三波长输出光谱

      Figure 11.  Output spectra of switchable triple-wavelength

      图  12  可切换四波长输出光谱

      Figure 12.  Output spectra of switchable quadruple-wavelength

      综上所述,提出的基于双Sagnac环滤波器的多波长掺铒光纤激光器能够产生可切换的、稳定的单、双、三波长激光输出,最多输出波长数为六波长,同时三波长和四波长有不同的输出间隔,实验现象良好。

    • 文中设计研究了一种可用于实现可切换多波长掺铒光纤激光器的梳状滤波结构。双Sagnac环滤波器主要由PMF、FMF和PC组成,将该滤波器应用于激光系统,基于PHB效应,通过调节三个PC,在室温下可以得到稳定单、双、三波长输出的可切换多波长光纤激光器,最多输出波长数为六波长,同时还可以切换输出波长的位置。实验中,所获得输出激光的SMSR大于34 dB,在稳定性测试中,测得最大波长漂移量小于0.05 nm,输出激光较为稳定,且三波长和四波长有不同的输出间隔。该激光器具有结构简单,较高SMSR,稳定性良好等优点,在光谱分析、光纤传感器和光通信等领域有潜在应用。

参考文献 (16)

目录

    /

    返回文章
    返回