留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

400 mm口径片状放大器JG2钕玻璃增益与激光输出性能实验研究

陈林 吴文龙 赵军普 王振国 柳强

陈林, 吴文龙, 赵军普, 王振国, 柳强. 400 mm口径片状放大器JG2钕玻璃增益与激光输出性能实验研究[J]. 红外与激光工程, 2021, 50(10): 20200461. doi: 10.3788/IRLA20200461
引用本文: 陈林, 吴文龙, 赵军普, 王振国, 柳强. 400 mm口径片状放大器JG2钕玻璃增益与激光输出性能实验研究[J]. 红外与激光工程, 2021, 50(10): 20200461. doi: 10.3788/IRLA20200461
Chen Lin, Wu Wenlong, Zhao Junpu, Wang Zhenguo, Liu Qiang. Gain and laser output performance of JG2 Nd: glass in 400 mm aperture slab amplifier[J]. Infrared and Laser Engineering, 2021, 50(10): 20200461. doi: 10.3788/IRLA20200461
Citation: Chen Lin, Wu Wenlong, Zhao Junpu, Wang Zhenguo, Liu Qiang. Gain and laser output performance of JG2 Nd: glass in 400 mm aperture slab amplifier[J]. Infrared and Laser Engineering, 2021, 50(10): 20200461. doi: 10.3788/IRLA20200461

400 mm口径片状放大器JG2钕玻璃增益与激光输出性能实验研究

doi: 10.3788/IRLA20200461
详细信息
    作者简介:

    陈林,男,副研究员,博士生,主要从事高功率固体激光技术方面的研究

    柳强,男,教授,博士,主要从事全固态激光及非线性光学频率变换技术方面的研究

  • 中图分类号: TN244; TN248.1

Gain and laser output performance of JG2 Nd: glass in 400 mm aperture slab amplifier

  • 摘要: 介绍了用于惯性约束聚变研究高功率激光驱动装置400 mm口径片状放大器系统的JG2钕玻璃片激光增益与激光输出性能等实验研究结果。利用一组三片长的400 mm口径4×2组合式片状放大器系统开展的增益性能实验结果表明,系统工作电压31 kV时小信号净增益系数达到5.37%/cm,小信号增益倍数为1.284倍/片/程,发次运行完成后利用0.3 m/s的洁净干燥气体进行冷却,热恢复时间约为2 h;利用大口径高通量验证实验平台开展的实验结果表明,基于JG2与N41钕玻璃片的优化组合使用最高输出能量达到21.3 kJ/1053 nm,目前已稳定运行500余发,未出现包边胶层异常与材料体损伤等故障。
  • 图  1  (a) 400 mm口径4×2组合式片状放大器示意图及 (b)剖视图

    Figure  1.  (a) Scheme of the 4×2 multi-slab amplifiers (MSA) with 400 mm aperture and (b) section view of the MSA

    图  2  系统实验光路示意图

    Figure  2.  Experimental light path diagram of system

    图  3  大口径高通量验证实验平台装置多程放大构型

    Figure  3.  Multi-pass amplified configuration of ITB laser facility

    图  4  方形脉冲时间波形

    Figure  4.  Square pulse time waveform

    图  5  18.2 kJ/5 ns/1053 nm主放大器输出光束近场。(a)三维分布;(b)二维分布;(c)一维分布

    Figure  5.  Near field of laser output of the main amplifiers (18.2 kJ/5 ns/1 053 nm). (a) 3-D outline; (b) 2-D outline; (c) 1-D outline

    表  1  JG2钕玻璃主要激光物理参数

    Table  1.   Main laser physical parameters of JG2 Nd:glass

    ParameterValue
    Typical size/mm3810×460×40
    Thickness of cladding glass/mm~12
    Coefficient of absorption of cladding glass
    (1 053 nm)/cm−1
    2.8±0.2
    Nd concentration/1020 ions·cm−34.2±0.1
    Cross section/10−20 cm−23.6±0.1
    Fluorescence lifetime/μs305
    n linear refractive index (1053 nm)1.520
    n2 nonlinear refractive index/10−13 esu1.05
    下载: 导出CSV

    表  2  基本方案技术参数

    Table  2.   Technical parameters of the scheme

    ParameterValue
    Pre-ionized voltage/kV 26
    Work voltage/kV 31
    Peak current/kA 17
    Delay between work and pre-ionization/μs 250
    Current pulse width(10%-10%) 450
    Flashlamp numbers every circuit 2
    Pumping circuit numbers every amplifier 20
    Flashlamp diameter/mm 37
    Flashlamp arc length/mm 1 850
    Flashlamp gas pressure/Torr 180
    下载: 导出CSV

    表  3  大口径高通量验证实验平台主要性能参数

    Table  3.   Main characteristic parameters of Integration-Test-Bed (ITB) laser facility

    ParameterValue
    Number of the laser beam 1
    Laser aperture Square,max: 375 mm×375 mm
    Number of the amplifers Main amplifier: 9,booster amplifier: 7
    Working voltage/kV Convention: 21 kV,max: 24 kV
    Work pattern Impulse work,the interval of
    delivery is about 2 h
    Operating wavelength/nm 1053 nm,after the frequency
    doubling is 351 nm
    Time waveform The typical working waveform is
    square pulse, and the pulse can
    be shaped arbitrarily
    下载: 导出CSV

    表  4  主要性能参数对比

    Table  4.   Comparison of main performance parameters

    ParameterJG2NIF laser facility in USA(LHG8/LG770)
    Aperture Square,max:400 mm×400 mm Square,max: 400 mm×400 mm
    Nd concentration/1020 ions·cm−3 4.2±0.1 4.2±0.1
    Cross section/10−20 cm−2 3.6±0.1 3.6±0.1(LHG-8);3.9±0.1(LG770)
    Fluorescence lifetime/μs 305 ≥300
    Small gain coefficient/cm−1 5.37% ~5% (convention);~5.3% (max)
    Multiple of small gain/slab·pass−1 1.284 1.29
    Energy density/J·cm−3 0.282 0.252 (convention);0.267 (max)
    Output energy for conventional operation/kJ (1053 nm) 18 18
    Maximum output energy/kJ (1053 nm) 21.3 ~22
    Thermal recovery time/h 2 h (Operating frequency of the device is 4 h) (Operating frequency of the device is 4 h)
    下载: 导出CSV
  • [1] Spaeth M L, Manes K R, Bowers M, et al. National ignition facility laser system performance [J]. Fusion Science and Technology, 2016, 69(1): 366-394. doi:  10.13182/FST15-136
    [2] Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF laser [J]. Fusion Science and Technology, 2016, 69(1): 25-145. doi:  10.13182/FST15-144
    [3] Haynam C A, Wegner P J, Auerbach J M, et al. National ignition facility laser performance status [J]. Applied Optics, 2007, 46(16): 3276. doi:  10.1364/AO.46.003276
    [4] Wen Lei, Chen Lin, Liu Jianguo, et al. Investigation on gain properties of N31 neodymium glass slab amplifiers[J], Chinese Journal of Lasers, 2016, 43(4): 0402008. (in Chinese)
    [5] Di Nicola J M, Bond T, Bowers M, et al. The national ignition laser performance status [C]//11th International Conference on Inertial Fusion Science and Amplications, 2019. (in Chinese)
    [6] 胡俊江, 陈坚, 温磊, 等. 大尺寸片状激光钕玻璃包边界面超低剩余反射率检测装置和方法: 中国, 110927119A [P]. 2020-03-27.
    [7] Huang Wanqing, Zhang Ying, Sun Xibo. et al. B-integral criteria for high power solid-state laser facility [J]. Laser and Optoelectronics Progress, 2019, 56(12): 121403. (in Chinese) doi:  10.3788/LOP56.121403
    [8] Cao Jun, Yang Minghong, Wei Chaoyang, et al. Effects of rogue particles on scratches of phosphate neodymium glass polishing [J]. Chinese Journal of Lasers, 2015, 42(1): 0116002. (in Chinese)
    [9] Zhang Liyan, Li Hong, Hu Lili, et al. Structure modeling of genes in glass: composition-structure-property approach [J]. Journal of Inorganic Materials, 2019, 34(8): 885-892. (in Chinese) doi:  10.15541/jim20180514
    [10] Cheng Jimeng, Zhou Qinling, Chen Wei, et al. The detection of platinum particles in large diameter Nd:glass blank by high power laser radiation [J]. Infrared and Laser Engineering, 2017, 46(11): 1106001. (in Chinese)
    [11] Wei Xiaofeng, Zheng Wanguo, Zhang Xiaomin. Two breakthroughs in the development of high power solid-state laser technology in China [J]. Physics, 2018, 47(2): 73-83. (in Chinese)
    [12] Li Yangliang, Shen Chao, Shao Li, et al. Automatic acquisition of dynamic characteristics of fused silicon particle ejection induced by laser [J]. Infrared and Laser Engineering, 2020, 49(3): 0305003. (in Chinese)
    [13] Wu Zhujie, Pan Yunxiang, Zhao Jingyuan, et al. Research on laser-induced damage of K9 glass irradiated by millisecond laser [J]. Infrared and Laser Engineering, 2019, 48(8): 0805005. (in Chinese)
    [14] Wang Bingyan, Li Yangshuai, Zhang Panzheng, et al. Nd∶Glass amplifier with repetition rate fabricated by flash-lamp pumping and liquid cooling method [J]. Chinese Journal of Lasers, 2019, 46(10): 1001007. (in Chinese)
    [15] 严雄伟. 重复频率Yb:YAG激光系统ASE及能流特性研究[D]. 绵阳: 中国工程物理研究院, 2009.
  • [1] 朱福喜, 裴丽, 王建帅, 徐文轩, 郑晶晶, 李晶, 宁提纲.  多芯超模光纤放大器增益均衡设计(内封底文章) . 红外与激光工程, 2024, 53(1): 20230504-1-20230504-9. doi: 10.3788/IRLA20230504
    [2] 王怡哲, 喻学昊, 刘墨林, 朱能伟, 游利兵, 方晓东.  低抖动准分子激光放大器光源的研究 . 红外与激光工程, 2023, 52(3): 20220468-1-20220468-7. doi: 10.3788/IRLA20220468
    [3] 唐瑞鑫, 段存丽.  基于亚纳秒微片激光器的能量放大器的研究 . 红外与激光工程, 2022, 51(4): 20210200-1-20210200-5. doi: 10.3788/IRLA20210200
    [4] 姚天甫, 范晨晨, 肖虎, 黄良金, 冷进勇, 周朴.  LD泵浦拉曼光纤放大器首次实现高亮度激光输出 . 红外与激光工程, 2022, 51(6): 20220293-1-20220293-2. doi: 10.3788/IRLA20220293
    [5] 杜鑫彪, 陈檬, 任俊杰, 高小强.  1 kHz高倍率亚纳秒全固态激光放大器研究 . 红外与激光工程, 2020, 49(3): 0305001-0305001-5. doi: 10.3788/IRLA202049.0305001
    [6] 颜凡江, 杨策, 陈檬, 桑思晗, 李梦龙, 蒙裴贝.  高重频高峰值功率窄线宽激光放大器 . 红外与激光工程, 2019, 48(2): 206002-0206002(5). doi: 10.3788/IRLA201948.0206002
    [7] 王标, 庞璐, 衣永青, 潘蓉, 耿鹏程, 宁鼎, 刘君.  国产25/400 μm掺镱光纤实现3.2 kW激光输出 . 红外与激光工程, 2019, 48(7): 706009-0706009(6). doi: 10.3788/IRLA201948.0706009
    [8] 李伟, 邵利民, 袁群哲.  黄海平流雾对8~12 μm波段红外辐射衰减的实验研究 . 红外与激光工程, 2019, 48(7): 704005-0704005(6). doi: 10.3788/IRLA201948.0704005
    [9] 翟小飞, 周进, 赖林.  周期性温度激励对MGDL混合性能及小信号增益系数的影响 . 红外与激光工程, 2019, 48(6): 606003-0606003(7). doi: 10.3788/IRLA201948.0606003
    [10] 陈霞飞, 张凯伦, 陈子阳, 李小燕, 蒲继雄.  直接输出高阶横模激光器的实验研究 . 红外与激光工程, 2018, 47(6): 606002-0606002(5). doi: 10.3788/IRLA201847.0606002
    [11] 贾中青, 张振振, 姬光荣.  离焦量对激光超声测厚信号影响的理论和实验研究 . 红外与激光工程, 2017, 46(S1): 7-12. doi: 10.3788/IRLA201746.S106002
    [12] 李伟, 邵利民, 李树军, 周红进.  水面舰艇8~12μm波段红外辐射建模与实验研究 . 红外与激光工程, 2017, 46(2): 204001-0204001(4). doi: 10.3788/IRLA201746.0204001
    [13] 张宇露, 惠勇凌, 姜梦华, 雷訇, 李强.  LD泵浦铒镱共掺磷酸盐玻璃被动调Q微型激光器实验研究 . 红外与激光工程, 2017, 46(3): 305004-0305004(6). doi: 10.3788/IRLA201746.0305004
    [14] 龙青云, 胡素梅, 朱伟玲.  光纤拉曼放大器的最大拉曼增益特性 . 红外与激光工程, 2016, 45(1): 122006-0122006(6). doi: 10.3788/IRLA201645.0122006
    [15] 王丹燕, 姜海明, 谢康.  双向多泵浦光纤拉曼放大器偏振相关增益研究 . 红外与激光工程, 2016, 45(2): 222003-0222003(5). doi: 10.3788/IRLA201645.0222003
    [16] 张德平, 吴超, 张蓉竹, 孙年春.  LD 端面泵浦分离式放大器结构的热效应研究 . 红外与激光工程, 2015, 44(8): 2250-2255.
    [17] 戚刚, 熊水东, 梁迅, 林惠祖.  用于微弱信号放大的高性能窄线宽纳秒脉冲光纤放大器 . 红外与激光工程, 2015, 44(11): 3234-3237.
    [18] 王新强, 孙晓兵, 张丽娟, 汪杰君, 谢秋蓉, 叶松.  可见/近红外土壤湿度的光谱偏振特性实验研究 . 红外与激光工程, 2015, 44(11): 3288-3292.
    [19] 李磊, 王建磊, 程小劲, 刘晶, 施翔春, 陈卫标.  低温重复率Yb:YAG 固体激光放大器 . 红外与激光工程, 2013, 42(5): 1170-1173.
    [20] 周亚训, 徐星辰.  C+L 波段宽带增益平坦铋基掺铒光纤放大器的设计 . 红外与激光工程, 2012, 41(8): 2119-2124.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  86
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 修回日期:  2021-02-08
  • 刊出日期:  2021-10-20

400 mm口径片状放大器JG2钕玻璃增益与激光输出性能实验研究

doi: 10.3788/IRLA20200461
    作者简介:

    陈林,男,副研究员,博士生,主要从事高功率固体激光技术方面的研究

    柳强,男,教授,博士,主要从事全固态激光及非线性光学频率变换技术方面的研究

  • 中图分类号: TN244; TN248.1

摘要: 介绍了用于惯性约束聚变研究高功率激光驱动装置400 mm口径片状放大器系统的JG2钕玻璃片激光增益与激光输出性能等实验研究结果。利用一组三片长的400 mm口径4×2组合式片状放大器系统开展的增益性能实验结果表明,系统工作电压31 kV时小信号净增益系数达到5.37%/cm,小信号增益倍数为1.284倍/片/程,发次运行完成后利用0.3 m/s的洁净干燥气体进行冷却,热恢复时间约为2 h;利用大口径高通量验证实验平台开展的实验结果表明,基于JG2与N41钕玻璃片的优化组合使用最高输出能量达到21.3 kJ/1053 nm,目前已稳定运行500余发,未出现包边胶层异常与材料体损伤等故障。

English Abstract

    • 目前用于惯性约束聚变研究的高功率激光装置如美国的国家点火装置(NIF)、法国兆焦耳激光装置(LMJ)等均采用了氙灯泵浦钕玻璃片的400 mm口径片状放大器系统[1-3],钕玻璃片与主激光呈布儒斯特角放置,可提供400 mm×400 mm的正方形通光口径,可将百mJ量级的1053 nm种子光放大至20000 J左右。钕玻璃片是片状放大器系统的核心组件之一,其特性参数对整个装置的激光输出特性有着直接而重要的影响:比如钕玻璃片掺杂浓度、吸收损耗、上能级荧光寿命、1053 nm线性折射率、受激发射截面、包边剩余反射率等激光物理参数将影响装置的增益能力[4-7];钕玻璃片波面质量、表面质量、光学均匀性、非线性折射率系数等将影响激光输出能量与光束质量 [8-10];钕玻璃片化学稳定性、损伤特性与包边寿命将影响整个装置的可靠性[11-13];钕玻璃的热导率、线膨胀系数等将影响装置的运行频率[14]

      文中介绍了用于高功率大能量激光装置的新型JG2钕玻璃片的增益与激光输出性能的实验研究结果,钕玻璃片尺寸为810 mm×460 mm×40 mm,其小信号净增益系数为5.37%/cm,小信号增益倍数为1.284倍/片/程,热恢复时间约为2 h,最高输出能量达到21.3 kJ/1053 nm。

    • JG2钕玻璃为典型四能级固体激光增益介质,主要用于脉冲激光放大,基本激光物理参数如表1所示,具有高储能、1053 nm吸收损耗低、非线性折射率系数低等特点,尺寸为810 mm×460 mm×40 mm,四周各有约12 mm厚度的包边用于吸收放大自发辐射荧光。

      表 1  JG2钕玻璃主要激光物理参数

      Table 1.  Main laser physical parameters of JG2 Nd:glass

      ParameterValue
      Typical size/mm3810×460×40
      Thickness of cladding glass/mm~12
      Coefficient of absorption of cladding glass
      (1 053 nm)/cm−1
      2.8±0.2
      Nd concentration/1020 ions·cm−34.2±0.1
      Cross section/10−20 cm−23.6±0.1
      Fluorescence lifetime/μs305
      n linear refractive index (1053 nm)1.520
      n2 nonlinear refractive index/10−13 esu1.05

      用于增益性能实验研究的装置为一组三片长的400 mm口径4×2组合式片状放大器, 如图1所示。放大器高度方向为四片钕玻璃片叠加,形成四个通光子口径,宽度方向有两个通光子口径,总体形成4×2的通光口径,氙灯从两侧对钕玻璃片进行泵浦。为提高氙灯光利用率,侧灯箱采用了镀银渐开线反射器,中灯箱采用了镀银菱形反射器,对400~1000 nm氙灯光平均反射率约为92%。隔板玻璃置于灯箱与钕玻璃片之间,镀有宽带的增透膜,对400~1000 nm氙灯光平均透过率约为96%。发次完成后气流从顶部至底部进行吹扫和冷却,实现洁净与热效应的快速恢复。装置基本方案如表2所示(1 Torr =133.322 Pa)。

      图  1  (a) 400 mm口径4×2组合式片状放大器示意图及 (b)剖视图

      Figure 1.  (a) Scheme of the 4×2 multi-slab amplifiers (MSA) with 400 mm aperture and (b) section view of the MSA

      表 2  基本方案技术参数

      Table 2.  Technical parameters of the scheme

      ParameterValue
      Pre-ionized voltage/kV 26
      Work voltage/kV 31
      Peak current/kA 17
      Delay between work and pre-ionization/μs 250
      Current pulse width(10%-10%) 450
      Flashlamp numbers every circuit 2
      Pumping circuit numbers every amplifier 20
      Flashlamp diameter/mm 37
      Flashlamp arc length/mm 1 850
      Flashlamp gas pressure/Torr 180

      JG2钕玻璃的增益储能动力学过程[15]如公式(1)所示。将整个钕玻璃片空间上划分为N个网格,整个泵浦过程分割为时间步长为$\Delta {{{t}}}$的片段。钕玻璃激光介质在吸收氙灯辐射的泵浦光后获得泵浦储能(如公式(1)所示)的同时又以荧光形式随机向$ 4\mathrm{\pi } $空间辐射能量,在泵浦开始后t时刻介质单元$ \Delta {V} $的储能密度为$ {E}_{st}(x,y,{\textit{z}}) $,根据爱因斯坦关系,有一部分储能会以荧光形式衰减掉,在$ \Delta {t} $间隔内自发辐射荧光(SE)能量密度$ {E}_{SE}(x,y,{\textit{z}}) $如公式(2)所示。自发辐射荧光在经过另一体积元时,自发辐射光被放大(形成ASE),荧光的能量如公式(3)所示,此时初始储能密度变为$ {E}_{st} $,如公式(4)所示。

      $$ \begin{split} {E}_{st}\left(x,y,{\textit{z}},n+1\right)=&{(E}_{st}\left(x,y,{\textit{z}},n\right)+{W}_{p}(x,y,{\textit{z}},t)\Delta t)·\\ &\mathrm{e}\mathrm{x}\mathrm{p}(-\Delta t /\tau ) \end{split} $$ (1)
      $$ {E}_{SE}\left(x,y,{\textit{z}},n+1\right)=(1-\mathrm{e}\mathrm{x}\mathrm{p}(-\Delta t/\tau \left)\right){E}_{st}(x,y,{\textit{z}},n+1) $$ (2)
      $$ {E}_{ASE}\left(x,y,{\textit{z}},n+1\right)={E}_{SE}(x,y,{\textit{z}},n+1)\mathrm{e}\mathrm{x}\mathrm{p}\left[\right({g}_{0}-{\alpha }_{ns}\left)d\right] $$ (3)
      $$ {E}_{st}'\left(x,y,{\textit{z}},n+1\right)={E}_{st}\left(x,y,{\textit{z}},n+1\right)-{\delta }_{E}(x,y,{\textit{z}},n+1) $$ (4)

      式中:τ为钕玻璃上能级荧光寿命;$ {\alpha }_{ns} $为钕玻璃介质对1053 nm工作波长的损耗系数,主要与材料本征特性相关;$ {g}_{0} $为瞬态小信号增益系数,与储能密度的关系如公式(5)所示:

      $$ {g}_{0}={E}_{st}\mathrm{\sigma }/{h}{v} $$ (5)

      式中:σ为钕玻璃受激发射截面;h为普朗克常量;v为激光频率。

      根据表2所示的技术方案及以上理论储能模型,计算JG2钕玻璃片38.6 mm厚度时小信号增益系数最高约为5.35%/cm,小信号增益倍数为1.281倍/片/程。

      小信号增益系数实验光路如图2所示。利用一台单模激光器作为种子光,经过整形、扩束成为385 mm的方形光束通过片状放大器并经腔镜反射后返回,钕玻璃安装的表面法线与种子光的夹角为56.7°(布儒斯特角)。

      图  2  系统实验光路示意图

      Figure 2.  Experimental light path diagram of system

      利用能量卡计Ein处测注入能量,在能量卡计Eout处测输出能量。首先调整能量卡计位置使得本底为0(注入能量卡计与输出能量卡计在没有激光注入且放大器正常工作时读数均为0);然后测量静态(让激光通过放大器而放大器氙灯不工作)时的放大器的输入能量Eini和输出能量EoutiEoutiEini之比可得出静态透过率Ti,测试20组Ti取算术平均值,得到静态透过率T,如公式(6)所示:

      $$ {{T}} = \left(\sum\limits_{{{i}} = {\rm{1}}}^{{\rm{20}}} {{{T}}_{{i}}}\right)/20 = \left(\sum\limits_{{{i}} = {\rm{1}}}^{{\rm{20}}} {\dfrac{{{{{E}}_{{\rm{outi}}}}}}{{{{{E}}_{{\rm{ini}}}}}}} \right)/20 $$ (6)

      最后测量动态(探针激光通过放大器且放大器氙灯正常工作)时的放大器的输入能量Ein和输出能量Eout,通过公式(7)可以得到六张钕玻璃片的平均小信号增益系数$\;\overline \beta $

      $$ \overline \beta = \frac{{{n}}}{{{{NL}}\sqrt {{{{n}}^{\rm{2}}} + 1} }}\ln \left(\frac{{{{{E}}_{{\rm{out}}}}}}{{{{T}} \times {{{E}}_{{\rm{in}}}}}}\right) $$ (7)

      六片钕玻璃的净增益倍数G用公式(8)进行计算:

      $$ {{G}} = \frac{{{{{G}}_{{0}}}}}{{{T}}} $$ (8)

      小信号增益系数β定义为:

      $$ \beta = \frac{{{n}}}{{{{NL}}\sqrt {{{{n}}^{\rm{2}}} + 1} }}\ln (G) $$ (9)

      式中:n为钕玻璃的折射率,n=1.520;L为钕玻璃的厚度,三片JG2钕玻璃片平均厚度L=3.86 cm;N为激光经过的等效钕玻璃片数,N=6。系统运行于设计工作电压为31 kV时,测量光束口径为385 mm×385 mm,小信号增益系数为5.37%/cm,小信号增益倍数为1.28倍/片/程,储能密度达到0.282 J/cm3,与理论计算结果具有较好的一致性。

      发次运行完成后利用洁净气体进行钕玻璃片吹扫冷却,气体基本参数为洁净度10级(ISO4级)、相对湿度低于0.1%RH、钕玻璃表面风速约为0.3 m/s,吹扫冷却时间为45 min。以2 h/发的频率连续运行六发,六片钕玻璃片累积的动态波前畸变稳定于1.4 λ±0.1 λλ=1053 nm)范围内,没有因多发次运行累积的残余热畸变,因此钕玻璃发次前已实现热恢复。

    • 开展输出性能研究的大口径高通量验证实验平台为一台单束激光输出的激光装置,与美国NIF装置的一束激光类似,由前端、预放、空间滤波器、频率转换、片状放大器等分系统组成,其主要性能参数如表3所示。

      表 3  大口径高通量验证实验平台主要性能参数

      Table 3.  Main characteristic parameters of Integration-Test-Bed (ITB) laser facility

      ParameterValue
      Number of the laser beam 1
      Laser aperture Square,max: 375 mm×375 mm
      Number of the amplifers Main amplifier: 9,booster amplifier: 7
      Working voltage/kV Convention: 21 kV,max: 24 kV
      Work pattern Impulse work,the interval of
      delivery is about 2 h
      Operating wavelength/nm 1053 nm,after the frequency
      doubling is 351 nm
      Time waveform The typical working waveform is
      square pulse, and the pulse can
      be shaped arbitrarily

      大口径高通量验证实验平台光路构型为“四程主放+三程助推”,如图3所示。从前端(FE)中产生的种子激光经预放大器(PA)放大后,经由注入透镜和SFL1透镜扩束后进入腔内放大器(Main),然后被变形镜(Deformable mirror)反射,第二次经过腔内放大器,随后经过腔内空间滤波器(CSF)首次进入助推放大器(AMP2)到达反转器(Beam reverser)进行光斑旋转90°后返回,第二次进入助推放大器和第三次进入腔内放大器,被变形镜反射后第四次进入腔内放大器,第三次进入助推放大器后经由传输空间滤波器(TSF)单向传输后滤波后输出。整个过程中,共计三次经过助推放大器,四次经过腔内放大器,等效经过57片钕玻璃。

      图  3  大口径高通量验证实验平台装置多程放大构型

      Figure 3.  Multi-pass amplified configuration of ITB laser facility

      三片JG2钕玻璃片安装于助推放大器末级,在装置多程放大构型中等效为九片,其余位置为N41钕玻璃片。JG2钕玻璃具有储能密度大、损耗系数低、化学稳定性好等特点,而N41钕玻璃具有增益能力强、非线性系数低等特点,二者的激光物理特性接近于美国NIF 装置组合使用的LHG-8钕玻璃与LG770钕玻璃,可有效实现大能量激光输出。二者组合使用时,常规运行输出激光为18 kJ/5 ns/1053 nm方形脉冲波形,其典型脉冲波形与近场分布如图4图5所示,近场调制度1.32∶1,近场对比度0.072,近场调制得到良好控制,最高输出能量达到21.3 kJ/1 053 nm。经过500余发次运行,JG2钕玻璃未出现包边玻璃破裂及包边胶层喷胶、脱胶等异常,钕玻璃片材料体内也未出现由于铂金颗粒、杂质、气泡等导致的炸裂等异常。

      图  4  方形脉冲时间波形

      Figure 4.  Square pulse time waveform

      图  5  18.2 kJ/5 ns/1053 nm主放大器输出光束近场。(a)三维分布;(b)二维分布;(c)一维分布

      Figure 5.  Near field of laser output of the main amplifiers (18.2 kJ/5 ns/1 053 nm). (a) 3-D outline; (b) 2-D outline; (c) 1-D outline

    • 文中介绍了一种新型大口径JG2钕玻璃片的激光增益、热恢复与激光输出等激光物理性能的实验结果,达到了与美国NIF装置单束激光基本一致的性能,如表4所示。在400 mm口径4×2组合式片状放大器系统设计工作电压31 kV时,小信号净增益系数为5.37%/cm,小信号增益倍数为1.284倍/片/程,发次运行完成后利用风速为0.3 m/s的洁净气体进行冷却,热恢复时间约为2 h;基于JG2与N41钕玻璃片的优化组合使用,激光装置单束最高输出能量达到21.3 kJ/1053 nm,目前已稳定运行500余发。

      表 4  主要性能参数对比

      Table 4.  Comparison of main performance parameters

      ParameterJG2NIF laser facility in USA(LHG8/LG770)
      Aperture Square,max:400 mm×400 mm Square,max: 400 mm×400 mm
      Nd concentration/1020 ions·cm−3 4.2±0.1 4.2±0.1
      Cross section/10−20 cm−2 3.6±0.1 3.6±0.1(LHG-8);3.9±0.1(LG770)
      Fluorescence lifetime/μs 305 ≥300
      Small gain coefficient/cm−1 5.37% ~5% (convention);~5.3% (max)
      Multiple of small gain/slab·pass−1 1.284 1.29
      Energy density/J·cm−3 0.282 0.252 (convention);0.267 (max)
      Output energy for conventional operation/kJ (1053 nm) 18 18
      Maximum output energy/kJ (1053 nm) 21.3 ~22
      Thermal recovery time/h 2 h (Operating frequency of the device is 4 h) (Operating frequency of the device is 4 h)
参考文献 (15)

目录

    /

    返回文章
    返回