留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多谱段滤光片平面波透射波前仿真测试方法

杜建祥 宗肖颖 罗世魁 高超

杜建祥, 宗肖颖, 罗世魁, 高超. 多谱段滤光片平面波透射波前仿真测试方法[J]. 红外与激光工程, 2021, 50(9): 20200528. doi: 10.3788/IRLA20200528
引用本文: 杜建祥, 宗肖颖, 罗世魁, 高超. 多谱段滤光片平面波透射波前仿真测试方法[J]. 红外与激光工程, 2021, 50(9): 20200528. doi: 10.3788/IRLA20200528
Du Jianxiang, Zong Xiaoying, Luo Shikui, Gao Chao. Plane wave transmitted wavefront simulation and measurement of filter with multi-spectrum[J]. Infrared and Laser Engineering, 2021, 50(9): 20200528. doi: 10.3788/IRLA20200528
Citation: Du Jianxiang, Zong Xiaoying, Luo Shikui, Gao Chao. Plane wave transmitted wavefront simulation and measurement of filter with multi-spectrum[J]. Infrared and Laser Engineering, 2021, 50(9): 20200528. doi: 10.3788/IRLA20200528

多谱段滤光片平面波透射波前仿真测试方法

doi: 10.3788/IRLA20200528
详细信息
    作者简介:

    杜建祥,男,高级工程师,硕士,主要从事光学装调与检测方面的研究

  • 中图分类号: P171.3

Plane wave transmitted wavefront simulation and measurement of filter with multi-spectrum

  • 摘要: 采用滤光片进行带通滤光是航天遥感相机实现多谱段成像的主要手段。滤光片一般使用平板玻璃作为基体,在平板玻璃两个通光表面镀带通的光学膜层,实现滤光的作用。所以对于滤光片而言,可以使用平面波透射波前评价其成像性能。干涉仪使用的测量光为单波长,无法实现全谱段覆盖。随着滤光片使用谱段数量的不断增加,干涉仪激光波长将不在滤光片的带通范围内,导致无法对其透射波前进行测试。为了解决滤光片带通谱段不包含干涉仪使用波长下的透射波前评价难题,提出了一种解决方案,使用单谱段干涉仪,结合滤光片镀膜前的前、后表面面形和透射波前、镀膜后的前后表面面形数据,研发了一种平面波透射波前的计算算法,得到仿真的镀膜后滤光片的透射波前数据,并以此来评价滤光片的成像性能。给出了透射波前仿真算法的详细理论推导。试验数据表明,在使用632.8 nm干涉仪波长下,滤光片镀膜后透射波前RMS的仿真精度小于0.004λ。该方法能够扩展应用在红外滤光片的测试中,实验使用3.39 μm的干涉仪测试,得到仿真误差约为0.002λ,均能实现较高精度。且在满足测试精度的前提下,有效降低了测试成本。
  • 图  1  未镀膜滤光片光线光程计算示意图

    Figure  1.  Optical path length calculation of filter without coating

    图  2  镀膜后光线光程计算示意图

    Figure  2.  Optical path length calculation of filter with coating

    表  1  可见谱段实验数据

    Table  1.   Visible spectrum experiments data

    Glass base Thickness/mmRefractive indexCoating characteristicsAverage value of refractive index of coatingQuantity
    Fused silica51.457 046632.8 nm pass1.825 4434
    下载: 导出CSV

    表  2  可见滤光片镀膜前后表面实测面形、透射波前和仿真透射波前的波前图(RMS@λ=632.8 nm)

    Table  2.   Surface sag and transmitted wavefront of the filter before and after coating in visible spectrum(RMS@λ=632.8 nm)

    Before coatingAfter coating
    Surface sag frontSurface sag backTransmitted wavefrontSurface sag frontSurface sag backTransmitted wavefront simulatedTransmitted wavefront measured
    0.0860.0510.0120.6070.6210.0260.028
    0.0300.0350.0100.2900.2980.0170.015
    0.0410.0820.0142.4472.4190.0430.040
    0.0550.0840.0190.0760.0720.0220.018
    下载: 导出CSV

    表  3  红外谱段实验条件

    Table  3.   Infrared spectrum experiments data

    Glass base Thickness/mmRefractive indexCoating characteristicsAverage value of refractive index of coatingQuantity
    Germanium34.045 13.39 μm pass3.351 2862
    下载: 导出CSV

    表  4  红外滤光片镀膜前后表面实测面形、透射波前和仿真透射波前的波前图(RMS@λ=3.39 μm)

    Table  4.   Surface sag and transmitted wavefront of the filter before and after coating in infrared spectrum(RMS@λ=3.39 μm)

    Before coatingAfter coating
    Surface sag frontSurface sag backSurface sag front Surface sag backSurface sag front Surface sag backSurface sag front
    0.0330.0150.0080.6560.6560.0120.011
    0.0210.0110.0110.0210.0160.0130.011
    下载: 导出CSV
  • [1] Li Yongqiang, Fu Ruimin, Guo Yongxiang, et al. Measurement and revision for ultra-narrow bandpass filter spectral characteristics [J]. Spacecraft Recovery & Remote Sensing, 2013, 34(2): 25-29. (in Chinese) doi:  10.3969/j.issn.1009-8518.2013.02.004
    [2] Chang Junlei, Li Fuqiang, Wang Weigang, et al. Multi-band filter design and assessment for space optical-remote-sensing camera [J]. Infrared and Laser Engineering, 2018, 47(3): 0320002. (in Chinese) doi:  10.3788/IRLA201847.0320002
    [3] Chang Junlei, Li Qinglin, Li Fuqiang, et al. Environmental adaptability assessment of the filter of space optical remote sensor detector [J]. Spacecraft Environment Engineering, 2018, 35(1): 1-5. (in Chinese) doi:  10.3969/j.issn.1673-1379.2018.01.016
    [4] Li Kaipeng, Wang Jizhou, Wang Duoshu, et al. Optical parameters measurement of infrared filter based on envelope-full spectral fitting inversion method [J]. Infrared and Laser Engineering, 2019, 48(9): 0913004. (in Chinese) doi:  10.3788/IRLA201948.0913004
    [5] Liu Qing, Zhou Jinsong, Nie Yunfeng, et al. Study of spectral property and measurement of linear variable filters [J]. Spectroscopy and Spectral Analysis, 2015(4): 1-4. (in Chinese) doi:  10.3964/j.issn.1000-0593(2015)04-1142-04
    [6] Zhang Xuguo, Lai Dakai, Wang Li, et al. Influences on image quality of filter installation errors [J]. Spacecraft Recovery & Remote Sensing, 2012, 33(6): 74-79, 106. (in Chinese) doi:  10.3969/j.issn.1009-8518.2012.06.012
    [7] Max Born. Principles of Optics[M]. Translated by Yang Jiasun, Beijing: Publishing House of Electronics Industry, 2009.(in Chinese)
    [8] Wang Chong, Luo Bin, Pan Wei. Algorithm of seeking precise refractive index value of spacer for controlling angle-tuned filter' polarization characteristics [J]. Acta Optica Sinica, 2005, 25(5): 1-5. (in Chinese) doi:  10.3321/j.issn:0253-2239.2005.05.029
  • [1] 纪恺祎, 邢裕杰, 钮信尚, 何春伶, 顿雄, 程鑫彬.  宽波段光谱成像系统杂散光分析及抑制 . 红外与激光工程, 2023, 52(5): 20220645-1-20220645-9. doi: 10.3788/IRLA20220645
    [2] 李世杰, 杨陈, 黄岳田, 梁海锋, 蔡长龙.  快刀伺服加工多通道滤光片阵列的间隔层模具 . 红外与激光工程, 2022, 51(10): 20220048-1-20220048-8. doi: 10.3788/IRLA20220048
    [3] 刘春雨, 丁祎, 刘帅, 樊星皓, 谢运强.  滤光片分光型高光谱相机发展现状及趋势(特邀) . 红外与激光工程, 2022, 51(1): 20210981-1-20210981-15. doi: 10.3788/IRLA20210981
    [4] 周晟, 刘定权, 王凯旋, 李耀鹏, 胡金超, 王曙光, 朱浩翔.  中短波红外双带通低温滤光片的设计与制备 . 红外与激光工程, 2022, 51(9): 20210964-1-20210964-9. doi: 10.3788/IRLA20210964
    [5] 王润福, 王多书, 范栋, 李晨, 王济洲, 董茂进.  短中波红外长线阵拼接集成滤光片技术研究 . 红外与激光工程, 2022, 51(6): 20210463-1-20210463-8. doi: 10.3788/IRLA20210463
    [6] 何文彦, 孔明东, 任戈, 魏铭.  非平行光束对窄带滤光片光谱性能的影响 . 红外与激光工程, 2022, 51(8): 20210757-1-20210757-7. doi: 10.3788/IRLA20210757
    [7] 刘维新, 魏志伟, 赵文谦, 丁星卜.  光学波片相位延迟测量仪设计 . 红外与激光工程, 2019, 48(7): 718001-0718001(7). doi: 10.3788/IRLA201948.0718001
    [8] 李凯朋, 王济洲, 王多书, 王云飞, 董茂进.  基于包-全法的红外滤光片光学参数测量方法 . 红外与激光工程, 2019, 48(9): 913004-0913004(7). doi: 10.3788/IRLA201948.0913004
    [9] 阴刚华, 栗孟娟, 李凌, 金忠瑞, 王兆明, 王向东.  低温真空环境光学系统波像差测试方法 . 红外与激光工程, 2018, 47(7): 717004-0717004(6). doi: 10.3788/IRLA201847.0717004
    [10] 尚鹏, 熊津平, 季一勤, 刘华松, 刘丹丹, 庄克文, 刘旭, 沈伟东.  多金属层诱导透射紫外“日盲”探测成像滤光片设计与低温制备研究 . 红外与激光工程, 2018, 47(9): 920002-0920002(7). doi: 10.3788/IRLA201847.0920002
    [11] 常君磊, 李富强, 王伟刚, 李庆林, 张楠, 范俊杰, 武永见, 张明柱.  航天光学遥感相机多谱带滤光片设计与考核方法 . 红外与激光工程, 2018, 47(3): 320002-0320002(7). doi: 10.3788/IRLA201847.0320002
    [12] 侯治锦, 傅莉, 鲁正雄, 司俊杰, 王巍, 吕衍秋.  用于识别面阵探测器相连缺陷元的新型光学滤光片 . 红外与激光工程, 2018, 47(7): 720003-0720003(7). doi: 10.3788/IRLA201847.0720003
    [13] 华浩然, 袁丽华, 邬冠华, 吴伟.  透射法的红外热波缺陷定量检测研究 . 红外与激光工程, 2016, 45(2): 204007-0204007(6). doi: 10.3788/IRLA201645.0204007
    [14] 崔珊珊, 裘桢炜, 洪津, 孟炳寰, 杨伟锋.  利用单通道预滤光片提高彩色相机显色能力的方法 . 红外与激光工程, 2016, 45(8): 824004-0824004(6). doi: 10.3788/IRLA201645.0824004
    [15] 郑光威, 郑秋容, 楚兴春.  基于截止滤光片的光束空间低通滤波技术研究 . 红外与激光工程, 2016, 45(S1): 60-64. doi: 10.3788/IRLA201645.S106004
    [16] 王济洲, 李宏, 熊玉卿, 董茂进, 张玲, 李晨.  一种具有抗静电反红外诱导滤光片的设计与制备 . 红外与激光工程, 2015, 44(10): 3005-3009.
    [17] 陈一超, 胡文刚, 武东生, 何永强, 李晓明.  三波段真彩色夜视光谱匹配技术 . 红外与激光工程, 2015, 44(12): 3837-3842.
    [18] 张佩杰, 宋克非.  极光成像仪滤光片高精度温度控制系统设计 . 红外与激光工程, 2014, 43(S1): 177-182.
    [19] 潘永强, 白涛, 杭凌侠.  太阳模拟器AM0型滤光片及其稳定性研究 . 红外与激光工程, 2013, 42(5): 1306-1310.
    [20] 付秀华, 唐昊龙, 刘国军, 刘凤娥, 张静.  高速电光调制器波导测试系统滤光片的研制 . 红外与激光工程, 2013, 42(12): 3379-3385.
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  65
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-28
  • 修回日期:  2021-08-02
  • 刊出日期:  2021-09-23

多谱段滤光片平面波透射波前仿真测试方法

doi: 10.3788/IRLA20200528
    作者简介:

    杜建祥,男,高级工程师,硕士,主要从事光学装调与检测方面的研究

  • 中图分类号: P171.3

摘要: 采用滤光片进行带通滤光是航天遥感相机实现多谱段成像的主要手段。滤光片一般使用平板玻璃作为基体,在平板玻璃两个通光表面镀带通的光学膜层,实现滤光的作用。所以对于滤光片而言,可以使用平面波透射波前评价其成像性能。干涉仪使用的测量光为单波长,无法实现全谱段覆盖。随着滤光片使用谱段数量的不断增加,干涉仪激光波长将不在滤光片的带通范围内,导致无法对其透射波前进行测试。为了解决滤光片带通谱段不包含干涉仪使用波长下的透射波前评价难题,提出了一种解决方案,使用单谱段干涉仪,结合滤光片镀膜前的前、后表面面形和透射波前、镀膜后的前后表面面形数据,研发了一种平面波透射波前的计算算法,得到仿真的镀膜后滤光片的透射波前数据,并以此来评价滤光片的成像性能。给出了透射波前仿真算法的详细理论推导。试验数据表明,在使用632.8 nm干涉仪波长下,滤光片镀膜后透射波前RMS的仿真精度小于0.004λ。该方法能够扩展应用在红外滤光片的测试中,实验使用3.39 μm的干涉仪测试,得到仿真误差约为0.002λ,均能实现较高精度。且在满足测试精度的前提下,有效降低了测试成本。

English Abstract

    • 在遥感相机中,滤光片提供光谱带通的功能,使相机能够对不同带宽的谱段进行成像[1],实现色彩融合、资源勘查等诸多应用[2]。一般滤光片为平板玻璃,通过表面镀上特殊的膜层来实现光谱带通的功能。对于平板玻璃,使用平面波透射波前指标的测量,能够较全面的反应光线通过滤光片后产生的波前畸变,以用来评价对成像系统的影响[3-6]。波前检测一般使用激光干涉仪,主流干涉仪激光波长为632.8 nm、3.39 和10.6 μm等,在大多数情况下,这三种波长的光并没有在滤光片的带通范围内,因此镀膜后滤光片的透射波前将无法直接测量。

      到目前为止,并没有有效的测量技术用于解决该项难题。为此提出了一种仿真间接计算的方法,该方法使用镀膜前的通光面面形、透射波前和镀膜后的通光面面形等数据,通过透射波前仿真算法,推导出镀膜后的透射波前数据。并且经过试验验证,可见光谱段的测量精度优于0.004λ,中波红外谱段的测量精度优于0.002λ

    • 为推导滤光片镀膜后平面波透射波前的计算公式,将这个过程分解为三部分:未镀膜时单光线光程计算公式推导、镀膜后单光线光程计算公式推导、镀膜后透射波前计算矩阵。

      首先介绍未镀膜时单光线光程计算公式推导。如图1所示,平面波中的其中一根光线(红色)从参考平面起始,从未镀膜滤光片的前表面入射,从后表面出射,到达测量平面。期间光线经过了3种物质空间,分别是空气层-玻璃-空气层。光线在测量平面上的相位φ,等于光线在参考平面上的相位加上光线传播过程中产生的光程引起的相位变化量。入射光为标准平面波,参考平面上光线的相位都相等,对最终透射波前的影响,表现为常数量,可设为0。因此,测量平面上的光线相位仅为光线传播过程中引入的相位变化。

      图  1  未镀膜滤光片光线光程计算示意图

      Figure 1.  Optical path length calculation of filter without coating

      $$ {OPL } = {PL } \times { n} $$ (1)

      公式(1)[7]为光线光程的计算公式,OPL为光程,PL为光线通过的物理长度,n为光线所在空间的折射率。

      图1d0分别为参考平面到滤光片前表面的距离和后表面到测量平面的距离。d为滤光片玻璃的名义厚度。ΔdFΔdR分别是前后表面在光线传播方向上的面形值。

      计算前,约定各段距离值沿光线传播方向为正。空气折射率为1,设玻璃折射率为nm

      $$ \begin{split} OP{L_{DMQ}} =& (d_0 + \varDelta dF) + (d - \varDelta dF + \varDelta dR){n_m} + (d_0 - \varDelta dR) =\\ &2d_0 + d{n_m} + ({n_m} - 1)(\varDelta dR - \varDelta dF) \end{split} $$ (2)

      公式(2)为光线从参考平面到达测量平面的光程。

      然后推导滤光片双面镀膜后的光线光程计算公式。如图2所示,Tc为双面膜层的平均厚度,ΔdF'和ΔdR'分别为镀膜后滤光片玻璃基体双面在光线传播方向上的面形。ΔtF'和ΔtR'分别为双面膜层在光线传播方向上的面形。

      图  2  镀膜后光线光程计算示意图

      Figure 2.  Optical path length calculation of filter with coating

      滤光片的膜层一般包含许多单一膜层,设一共有k层,第i层单一膜层的厚度为ti,折射率为ni

      $$OP{L_{coating}} = \sum\limits_{i = 1}^k {{t_i}{n_i}} $$ (3)

      公式(3)为膜层对于光程总的贡献量。

      $$OP{L_{coating}} = \sum\limits_{i = 1}^k {{t_i}{n_i}} = \sum\limits_{i = 1}^k {{t_i}} \times \frac{{\displaystyle\sum\limits_{i = 1}^k {{t_i}{n_i}} }}{{\displaystyle\sum\limits_{i = 1}^k {{t_i}} }} = \sum\limits_{i = 1}^k {{t_i}} \times {n_{ca}}$$ (4)

      公式(4)为对公式(3)进行的转化。其中,$\displaystyle\sum\limits_{i = 1}^k {{t_i}} $为膜层在光线处的厚度。

      $${n_{ca}} = \frac{{\displaystyle\sum\limits_{i = 1}^k {{t_i}{n_i}} }}{{\displaystyle\sum\limits_{i = 1}^k {{t_i}} }}$$ (5)

      式中:${n_{ca}}$为膜系的平均折射率[8]

      $$\begin{split} OP{L_{DMH}} =& {d_0 + \varDelta tF + ({T_c} - \varDelta tF + \varDelta dF'){n_{ca}} + (d - \varDelta dF' + dR'){n_m} +}\\ &({T_c} + \varDelta tR - \varDelta dR'){n_{ca}} + d_0 - \varDelta tR \end{split}$$ (6)

      公式(6)为镀膜后光线从参考平面到达测量平面的光程。

      $$\begin{split} OP{L_{DMH}} =& (2{T_c}{n_{ca}} + 2d_0) + d{n_m} + ({n_{ca}} - 1)(\varDelta tR - \varDelta tF) -\\ &({n_m} - {n_{ca}})(\varDelta dR' - \varDelta dF') \end{split}$$ (7)

      将镀膜后的光程公式进行重新组合得到公式(7),其中,$(2{T_C}{n_{ca}} + 2d_0) + d{n_m}$为常数项,对透射波前没有影响;$\varDelta tR - \varDelta tF$为镀膜后膜层外表面前后表面的面形差值;$\varDelta dR' - \varDelta dF'$为镀膜后滤光片玻璃基体前后表面面形的差值。

      $$\varDelta dR' - \varDelta dF' = \varDelta dR - \varDelta dF$$ (8)

      由于滤光片镀膜前后为整体变形,可得公式(9):

      $$\begin{split} OP{L_{DMH}} =& (2{T_C}{n_{ca}} + O{P_{DMQ}}) - ({n_{ca}} - 1)(\varDelta tR - \varDelta tF) +\\ &(2{n_m} - {n_{ca}} - 1)(\varDelta dR - \varDelta dF) \end{split}$$ (9)

      结合公式(2)、(7)、(8)得到公式(9),式中:$2{T_c}{n_{ca}}$为平均厚度和膜系平均折射率的乘积,常数项;$O{P_{DMQ}}$为镀膜前的光线传播的光程或者是透射波前;$({n_{ca}} - 1)(\varDelta tR - \varDelta tF)$为镀膜后的膜层外表面前后面的面形之差乘以系数${n_{ca}} - 1$;最后一项为$(2{n_m} - {n_{ca}} - 1) $$ (\varDelta dR - \varDelta dF)$,为镀膜前的滤光片玻璃基体前后面面形差值乘以系数$2{n_m} - {n_{ca}} - 1$

      以上为单根光线计算透射波前的算法,扩展至具有一定大小的平面波范围内,在平面波横截面上使用矩阵分割进行离散化,设将横截面分成mn列的矩阵,共有m×n个小面元,对于单个面元范围内,假设透射波前相等。

      $$RM{S_{TW}} = \sqrt {\frac{{\displaystyle\sum\limits_{i = 1\atop j = 1}^{i = m\atop j = n} {OP{L_{DMH}}^2(i,j)} }}{{m \times n}}} $$ (10)

      公式(10)为镀膜后透射波前均方根的计算公式。

    • 可见光谱段实验数据如表1所示,该实验使用的干涉仪波长为632.8 nm,并设计膜层使其能透波长为632.8 nm的光线,如此能够直接进行镀膜后透射波前的测量,与仿真透射波前进行对比。对四片滤光片进行了镀膜前后面形的测量。在632.8 nm波长下,膜系平均折射率为${n_{ca}}$=1.825443,玻璃基体厚度d=5 mm,折射率nm=1.457016。

      表 1  可见谱段实验数据

      Table 1.  Visible spectrum experiments data

      Glass base Thickness/mmRefractive indexCoating characteristicsAverage value of refractive index of coatingQuantity
      Fused silica51.457 046632.8 nm pass1.825 4434

      测量得到四片可见滤光片镀膜前、后两面面形、镀膜前的透射波前、镀膜后面形、镀膜后实测透射波前和仿真透射波前如表2所示。

      表 2  可见滤光片镀膜前后表面实测面形、透射波前和仿真透射波前的波前图(RMS@λ=632.8 nm)

      Table 2.  Surface sag and transmitted wavefront of the filter before and after coating in visible spectrum(RMS@λ=632.8 nm)

      Before coatingAfter coating
      Surface sag frontSurface sag backTransmitted wavefrontSurface sag frontSurface sag backTransmitted wavefront simulatedTransmitted wavefront measured
      0.0860.0510.0120.6070.6210.0260.028
      0.0300.0350.0100.2900.2980.0170.015
      0.0410.0820.0142.4472.4190.0430.040
      0.0550.0840.0190.0760.0720.0220.018
    • 红外谱段实验使用3.39 μm的激光干涉仪,并设计膜层使其能够透射该波长光线,实验条件如表3所示。测量得到两片红外滤光片镀膜前、后两面面形、镀膜前的透射波前、镀膜后面形、镀膜后实测透射波前和仿真透射波前如表4所示。

      表 3  红外谱段实验条件

      Table 3.  Infrared spectrum experiments data

      Glass base Thickness/mmRefractive indexCoating characteristicsAverage value of refractive index of coatingQuantity
      Germanium34.045 13.39 μm pass3.351 2862

      表 4  红外滤光片镀膜前后表面实测面形、透射波前和仿真透射波前的波前图(RMS@λ=3.39 μm)

      Table 4.  Surface sag and transmitted wavefront of the filter before and after coating in infrared spectrum(RMS@λ=3.39 μm)

      Before coatingAfter coating
      Surface sag frontSurface sag backSurface sag front Surface sag backSurface sag front Surface sag backSurface sag front
      0.0330.0150.0080.6560.6560.0120.011
      0.0210.0110.0110.0210.0160.0130.011
    • 根据以上4片可见滤光片和2片红外滤光片的测量和仿真计算结果,仿真透射波前和实测透射波前最大偏差分别为0.004λ和0.002λ,且波前的高低点分布能够基本吻合。但在局部区域上,有较明显的区别。总的来说可见滤光片的精度要比红外的稍差一些,主要是因为可见滤光片的双面面形测试精度要求更高。在此分析可见滤光片的误差分布情况。根据公式(9),主要原因有:

      (1)镀膜后的前、后表面面形测试误差

      平面面形的测试误差的RMS值一般在0.002λ,根据公式(9),$\varDelta tR - \varDelta tF$的误差为0.004λ${n_{ca}}$=1.825443,得到$({n_{ca}} - 1)(\varDelta tR - \varDelta tF)$项引入的测试误差${\varepsilon _1}$为:

      $${\varepsilon _1}{\rm{ = }}0.003\;3\lambda $$

      (2)镀膜前的前、后表面面形测试误差

      同理按照平面面形0.002λ的测试误差,得到公式(9)中$(2{n_m} - {n_{ca}} - 1)(\varDelta dR - \varDelta dF)$项的误差${\varepsilon _2}$为:

      $${\varepsilon _2}{\rm{ = }}0.000\;35\lambda $$

      (3)镀膜前滤光片基体的透射波前测试误差${\varepsilon _3}$为:

      $${\varepsilon _3}{\rm{ = }}0.002\lambda $$

      (4)膜系平均折射率${n_{ca}}$和滤光片基体折射率${n_m}$

      一般折射率的测试误差为0.0001以内,公式(9)中,折射率共出现4次,可得折射率对透射波前的误差贡献量${\varepsilon _4}$

      $${\varepsilon _4}{\rm{ = 4\cdot0}}{\rm{.000\;1}}\cdot0.004\lambda {\rm{ = }}1.6 \times {10^{ - 6}}\lambda $$

      可知,折射率误差对透射波前影响相对较小。综上所述,得到的镀膜后透射波前的误差$\varepsilon $为:

      $$\varepsilon {\rm{ = }}\sqrt {\varepsilon _1^2 + \varepsilon _2^2 + \varepsilon _3^2 + \varepsilon _4^2} {\rm{ = }}0.003\;9\lambda $$

      以上误差分析的结果基本能够与实验误差相吻合。

      当然,除了这些测试误差,在算法实现过程中,也会引入小量的计算误差。一是算法实现中的波前矩阵对准误差。根据2中的算法分析,需要将镀膜前前后表面的面形矩阵、透射波前矩阵、镀膜后面形矩阵进行点点对应,在实际计算中,由于各个面形标记点匹配都会有一定的误差,因此会引起微量的波前数据错位,从而引入计算误差。但是在大多数情况下,面形或者透射波前一般都为低阶像差,空间频率较低,对准误差比较小。二是对波前矩阵数据点间的插值误差,文中算法在进行波前矩阵对准中采用了物理距离对准,所有数据点都与基准标记点进行了坐标计算,根据像元对应的物理尺寸,对波前矩阵中的每个数据点都实现了物理坐标转换。但是在计算镀膜后透射波前的过程中,镀膜前后各波前矩阵数据点的物理坐标有可能并不相同,因此需要根据物理坐标插值,来实现数据点的真正对准。以上个算法实现误差通过算法实验,对镀膜后的透射波前的影响在0.0001λ以内,在更高精度要求的测试中应该予以考虑。

      由上述可知,仿真透射波前算法中由于使用了多个面形测试、材料折射率等数据,任何一个数据的测试偏差就会影响仿真精度。要得到更高精度的仿真值,提升各参数的测试精度是非常重要的。滤光片镀膜后的透射波前,在当前没有有效的测试技术进行精确的测量,该仿真技术的优势是解除了单波长干涉测量对滤光片透射波前测量的限制,通过面形和镀膜前透射波前的测量实现了任意波长带通滤光片在镀膜后透射波前的间接计算,且保证了透射波前的测试精度。

    • 对于多谱段滤光片镀膜后平面波透射波前的评价,给出了一种仿真技术,使用单波长干涉仪,测量镀膜前玻璃前后表面的面形、透射波前、镀膜后前后表面的面形,根据光程计算原理,推导出了测量得到的面形、波前数据与镀膜后透射波前的计算公式。对四片可见滤光片进行了仿真算法的验证,实验表明,镀膜后透射波前的仿真精度优于0.004λ。又使用两片红外滤光片进行仿真算法验证,精度优于0.002λ。后续对精度要求更高的可见滤光片的仿真误差进行了详细分析,面形的测试误差是主要的误差源,因此对面形和波前测试精度的要求非常高,通常要求在0.002以内。总之,文中方法可应用于可见到红外的超宽带宽的滤光片平面波透射波前测试中。作为该算法的扩展应用,滤光片基体的折射率均匀性的测量也成为可能,笔者将继续研究。

参考文献 (8)

目录

    /

    返回文章
    返回