留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光热载流子调控的二维材料红外与太赫兹探测器研究进展

朱久泰 郭万龙 刘锋 王林 陈效双

朱久泰, 郭万龙, 刘锋, 王林, 陈效双. 基于光热载流子调控的二维材料红外与太赫兹探测器研究进展[J]. 红外与激光工程, 2020, 49(1): 0103001-0103001(10. doi: 10.3788/IRLA202049.0103001
引用本文: 朱久泰, 郭万龙, 刘锋, 王林, 陈效双. 基于光热载流子调控的二维材料红外与太赫兹探测器研究进展[J]. 红外与激光工程, 2020, 49(1): 0103001-0103001(10. doi: 10.3788/IRLA202049.0103001
Zhu Jiutai, Guo Wanlong, Liu Feng, Wang Lin, Chen Xiaoshuang. Research progress of infrared and terahertz detectors based on two-dimensional materials regulated by photo-hot carrier[J]. Infrared and Laser Engineering, 2020, 49(1): 0103001-0103001(10. doi: 10.3788/IRLA202049.0103001
Citation: Zhu Jiutai, Guo Wanlong, Liu Feng, Wang Lin, Chen Xiaoshuang. Research progress of infrared and terahertz detectors based on two-dimensional materials regulated by photo-hot carrier[J]. Infrared and Laser Engineering, 2020, 49(1): 0103001-0103001(10. doi: 10.3788/IRLA202049.0103001

基于光热载流子调控的二维材料红外与太赫兹探测器研究进展

doi: 10.3788/IRLA202049.0103001
基金项目: 

国家重点研究发展计划(2018YFA0306200);国家自然科学基金(91850208,61521005)

详细信息
    作者简介:

    朱久泰(1995-),男,硕士生,主要从事红外太赫兹探测器件的设计与制作方面的研究。Email:zhujiutai@163.com

  • 中图分类号: TN215

Research progress of infrared and terahertz detectors based on two-dimensional materials regulated by photo-hot carrier

  • 摘要: 红外和太赫兹具有非常广阔的应用前景,在光谱学、成像、无线通信和遥感等领域发挥着越来越重要的作用。但是,由于红外、太赫兹波段的光子能量低,相关的探测遇到很大困难,所以实现高灵敏、高速和高稳定性的红外太赫兹探测是一个具有挑战性的工作。二维材料由于其高迁移率、带隙可调和表面悬挂键少等特点为红外太赫兹探测提供了新的机遇。基于光热载流子调控的二维材料红外、太赫兹探测器的发展方兴未艾。文中主要介绍了目前基于光热载流子调控的红外、太赫兹探测器的最新研究进展,将从材料、器件结构、响应波段和响应机理等方面展开。
  • [1] Wong M H, Giraldo J P, Kwak S Y, et al. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics[J]. Nat Mater, 2017, 16(2):264-272.
    [2] Miao J, Song Jinshu, Bo Xu, et al. Single pixel black phosphorus photodetector for near-infrared imaging[J]. Small, 2018, 14(2):1702082.
    [3] Ye L, Li Hao, Chen Zefeng, et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction[J]. ACS Photonics, 2016, 3(4):692-699.
    [4] Guo N, Hu Weida, Jiang Tao, et al. High-quality infrared imaging with graphene photodetectors at room temperature[J]. Nanoscale, 2016, 8(35):16065-16072.
    [5] Zhu Zhengfeng, Zou Yousheng, Hu Weida, et al. Near-infrared plasmonic 2D semimetals for applications in communication and biology[J]. Advanced Functional Materials, 2016, 26(11):1793-1802.
    [6] Li Zhen, Ezhilarasu, Goutham, et al. Indirect band gap emission by hot electron injection in Metal/MoS(2) and Metal/WSe(2) Heterojunctions[J]. Nano Lett, 2015, 15(6):3977-3982.
    [7] Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology[J]. Nat Nanotechnol, 2015, 10(1):25-34.
    [8] Zhong S. Progress in terahertz nondestructive testing:A review[J]. Frontiers of Mechanical Engineering, 2018, 14(3):273-281.
    [9] Bandurin D A, Svintsov Dmitry, Gayduchenko Igor, et al. Resonant terahertz detection using graphene plasmons[J]. Nat Commun, 2018, 9(1):53-92.
    [10] Luxmoore I J, Liu Peter, Li Penglei, et al. Graphene-metamaterial photodetectors for integrated infrared sensing[J]. ACS Photonics, 2016, 3(6):936-941.
    [11] Guo Q, Pospischil Andreas, Bhuiyan Maruf, et al. Black phosphorus mid-infrared photodetectors with high gain[J]. Nano Lett, 2016, 16(7):4648-4655.
    [12] Xu Ming, Gu Yuqian, Peng Ruoming, et al. Black phosphorus mid-infrared photodetectors[J]. Applied Physics B, 2017, 123(4):130.
    [13] Wang Xudong, Wang Peng, Wang Jianlu, et al.Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics[J]. Advanced Materials, 2015, 27(42):6575-6581.
    [14] Guo Junxiong, Li Shangdong, He Zhenbei, et al. Near-infrared photodetector based on few-layer MoS2 with sensitivity enhanced by localized surface plasmon resonance[J]. Applied Surface Science, 2019, 483:1037-1043.
    [15] Wang F, Li Leigang, Huang Wenjuan, et al. Submillimeter 2D Bi2Se3 Flakes toward high-performance infrared photodetection at optical communication wavelength[J]. Advanced Functional Materials, 2018, 28(33):1802707.
    [16] Sharma A, Bhattacharyya B,Srivastava A K, et al. High performance broadband photodetector using fabricated nanowires of bismuth selenide[J]. Sci Rep, 2016:6.
    [17] Wang Xinran, Dai Guozhan, Liu Biao, et al. Broadband photodetectors based on topological insulator Bi2Se3 nanowire with enhanced performance by strain modulation effect[J]. Physica E:Low-dimensional Systems and Nanostructures, 2019, 114:113-620.
    [18] Miao Jinshu, Hu Weida, Guo Nan, et al. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios[J]. Small, 2015, 11(8):936-942.
    [19] Kim J, Park Sungjoon, Jang Houk, et al. Highly sensitive, gate-tunable, room-temperature mid-infrared photodetection based on graphene-Bi2Se3 heterostructure[J]. ACS Photonics, 2017, 4(3):482-488.
    [20] Lin C, Grassi R, Low T, et al. Multilayer black phosphorus as a versatile mid-infrared electro-optic material[J]. Nano Lett, 2016, 16(3):1683-1689.
    [21] Peng R, Khaliji K,Youngblood N, et al. Midinfrared electro-optic modulation in few-layer black phosphorus[J]. Nano Lett, 2017, 17(10):6315-6320.
    [22] Chen X, Lu Xiaobo, Deng Bingchen, et al. Widely tunable black phosphorus mid-infrared photodetector[J]. Nat Commun, 2017, 8(1):16-72.
    [23] Ye Ling, Wang Peng, Luo Wenjin, et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure[J]. Nano Energy, 2017, 37:53-60.
    [24] Xiang Du, Han Cheng, Wu Jing, et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus[J]. Nat Commun, 2015, 6:64-85.
    [25] Spirito D, Coquillat D, De B, et al. High performance bilayer-graphene terahertz detectors[J]. Applied Physics Letters, 2014, 104(6):061111.
    [26] Tong J, Muthee M, Chen Shooyu, et al. Antenna enhanced graphene THz emitter and detector[J]. Nano Lett, 2015, 15(8):5295-5301.
    [27] Viti L, Coquillat D, Politano A, et al. Plasma-wave terahertz detection mediated by topological insulators surface states[J]. Nano Lett, 2016, 16(1):80-87.
    [28] Viti L, Hu Jin, Coquillat D, et al. Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response[J]. Sci Rep, 2016, 6:20474.
    [29] Qin Hua, Liang Shixiong, Li Xiang, et al. Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor,[J]. Carbon, 2016, 116:760-765.
    [30] Tang Weiwei, Politano A, Guo Cheng, et al. Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator[J]. Advanced Functional Materials, 2018, 28(31):1801786.
    [31] Castilla S, Terres B, Autore M, et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction[J]. Nano Lett, 2019, 19(5):2765-2773.
    [32] El Fatimy A, Schoen, Brongersma M L, et al. Epitaxial graphene quantum dots for high-performance terahertz bolometers[J]. Nat Nanotechnol, 2016, 11(4):335-338.
    [33] Chalabi H, Schoen D, Brongersma M L. Hot-electron photodetection with a plasmonic nanostripe antenna[J]. Nano Lett, 2014, 14(3):1374-1380.
    [34] Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nat Mater, 2012, 11(10):865-871.
    [35] Viti L, Hu Jin, Coquillat D, et al. Black phosphorus terahertz photodetectors[J]. Adv Mater, 2015, 27(37):5567-5572.
    [36] Viti L, Politano A, Zhang Kai, et al. Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes[J]. Nanoscale, 2019, 11(4):1995-2002.
    [37] Liu Changlong, Wang Lin, Chen Xiaoshuang, et al. Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene[J]. Advanced Optical Materials, 2018, 6(24):1800836.
    [38] Schlecht M T, Preu S, Malzer S, et al. An efficient Terahertz rectifier on the graphene/SiC materials platform[J]. Sci Rep, 2019, 9(1):11205.
    [39] Yadav D, Tombet S B, Watanabe T, et al. Terahertz wave generation and detection in double-graphene layered van der Waals heterostructures[J]. 2D Materials, 2016, 3(4):11205.
  • [1] 许敏达, 田雪, 姚睿, 肖昊苏, 陈澄.  带摆镜的二维扫描制冷红外光学系统设计 . 红外与激光工程, 2022, 51(3): 20210407-1-20210407-6. doi: 10.3788/IRLA20210407
    [2] 孟宪睿, 张铭, 席宇鹏, 王如志, 王长昊, 王波.  复合石墨烯/硅半球的宽带太赫兹超材料吸收器 . 红外与激光工程, 2022, 51(6): 20210648-1-20210648-7. doi: 10.3788/IRLA20210648
    [3] 贾欣宇, 兰长勇, 李春.  二维材料在红外探测器中的应用最新进展(特邀) . 红外与激光工程, 2022, 51(7): 20220065-1-20220065-16. doi: 10.3788/IRLA20220065
    [4] 耿蕊, 赵康, 陈青山.  红外量子点材料的远距离识别 . 红外与激光工程, 2021, 50(7): 20200436-1-20200436-8. doi: 10.3788/IRLA20200436
    [5] 许航瑀, 王鹏, 陈效双, 胡伟达.  二维半导体红外光电探测器研究进展(特邀) . 红外与激光工程, 2021, 50(1): 20211017-1-20211017-14. doi: 10.3788/IRLA20211017
    [6] 顾有林, 陆卫, 方佳节, 郑超, 陈曦, 王新宇, 胡以华.  人工制备红外消光材料及其消光性能研究进展(特约) . 红外与激光工程, 2020, 49(7): 20201018-1-20201018-14. doi: 10.3788/IRLA20201018
    [7] 王玄玉.  抗红外烟幕材料及消光性能研究进展(特约) . 红外与激光工程, 2020, 49(7): 20201019-1-20201019-9. doi: 10.3788/IRLA20201019
    [8] 梁丽, 文龙, 蒋春萍, 陈沁.  人工微结构太赫兹传感器的研究进展 . 红外与激光工程, 2019, 48(2): 203001-0203001(17). doi: 10.3788/IRLA201948.0203001
    [9] 张钊, 陈勰宇, 田震.  使用太赫兹快速探测器测量硅少数载流子寿命 . 红外与激光工程, 2019, 48(9): 919003-0919003(6). doi: 10.3788/IRLA201948.0919003
    [10] 郭波.  基于二维材料非线性效应的多波长超快激光器研究进展(特邀) . 红外与激光工程, 2019, 48(1): 103002-0103002(22). doi: 10.3788/IRLA201948.0103002
    [11] 毛梦涛, 陈锦辉, 丁梓轩, 徐飞.  基于光纤二维材料集成器件的脉冲激光器及外场调控(特邀) . 红外与激光工程, 2018, 47(8): 803003-0803003(13). doi: 10.3788/IRLA201847.0803003
    [12] 孙玉洁, 段俊萍, 王雄师, 张斌珍.  多孔耦合型太赫兹波导定向耦合器的设计 . 红外与激光工程, 2017, 46(1): 125002-0125002(7). doi: 10.3788/IRLA201746.0125002
    [13] 郑伟, 范飞, 陈猛, 白晋军, 常胜江.  基于太赫兹超材料的微流体折射率传感器 . 红外与激光工程, 2017, 46(4): 420003-0420003(6). doi: 10.3788/IRLA201746.0420003
    [14] 徐鸣, 李孟霞, 安鑫, 卞康康, 施卫.  红外猝灭非线性砷化镓光电导开关产生太赫兹的实验研究 . 红外与激光工程, 2016, 45(4): 425001-0425001(5). doi: 10.3788/IRLA201645.0425001
    [15] 侯宇, 杨会静.  垂直双空芯宽带太赫兹偏振分离器 . 红外与激光工程, 2016, 45(12): 1225005-1225005(5). doi: 10.3788/IRLA201645.1225005
    [16] 赵向阳, 王俊龙, 邢东, 杨大宝, 张立森, 梁士雄, 冯志红.  太赫兹平面肖特基二极管参数模型 . 红外与激光工程, 2016, 45(12): 1225004-1225004(6). doi: 10.3788/IRLA201645.1225004
    [17] 张学迁, 张慧芳, 田震, 谷建强, 欧阳春梅, 路鑫超, 韩家广, 张伟力.  利用介质超材料控制太赫兹波的振幅和相位 . 红外与激光工程, 2016, 45(4): 425004-0425004(6). doi: 10.3788/IRLA201645.0425004
    [18] 陈青山, 牛春晖, 吕勇, 徐岱, 魏元.  对镱铒共掺硫氧化钇红外上转换材料的远场探测与识别 . 红外与激光工程, 2015, 44(9): 2603-2608.
    [19] 童劲超, 黄敬国, 黄志明.  基于铟镓砷材料的新型太赫兹/亚毫米波探测器研究 . 红外与激光工程, 2014, 43(10): 3347-3351.
    [20] 于洋, 蹇毅, 潘兆鑫, 金亚平, 汤心溢.  红外二次成像无热化光学系统设计与实测 . 红外与激光工程, 2013, 42(12): 3180-3184.
  • 加载中
计量
  • 文章访问数:  1535
  • HTML全文浏览量:  515
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-05
  • 修回日期:  2019-11-15
  • 刊出日期:  2020-01-28

基于光热载流子调控的二维材料红外与太赫兹探测器研究进展

doi: 10.3788/IRLA202049.0103001
    作者简介:

    朱久泰(1995-),男,硕士生,主要从事红外太赫兹探测器件的设计与制作方面的研究。Email:zhujiutai@163.com

基金项目:

国家重点研究发展计划(2018YFA0306200);国家自然科学基金(91850208,61521005)

  • 中图分类号: TN215

摘要: 红外和太赫兹具有非常广阔的应用前景,在光谱学、成像、无线通信和遥感等领域发挥着越来越重要的作用。但是,由于红外、太赫兹波段的光子能量低,相关的探测遇到很大困难,所以实现高灵敏、高速和高稳定性的红外太赫兹探测是一个具有挑战性的工作。二维材料由于其高迁移率、带隙可调和表面悬挂键少等特点为红外太赫兹探测提供了新的机遇。基于光热载流子调控的二维材料红外、太赫兹探测器的发展方兴未艾。文中主要介绍了目前基于光热载流子调控的红外、太赫兹探测器的最新研究进展,将从材料、器件结构、响应波段和响应机理等方面展开。

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回