留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PIN探测器和跨阻放大器的光电单片集成

王宁 赵柏秦 王帅 王震

王宁, 赵柏秦, 王帅, 王震. PIN探测器和跨阻放大器的光电单片集成[J]. 红外与激光工程, 2021, 50(9): 20210076. doi: 10.3788/IRLA20210076
引用本文: 王宁, 赵柏秦, 王帅, 王震. PIN探测器和跨阻放大器的光电单片集成[J]. 红外与激光工程, 2021, 50(9): 20210076. doi: 10.3788/IRLA20210076
Wang Ning, Zhao Baiqin, Wang Shuai, Wang Zhen. Photoelectric monolithic integration of PIN detector and transimpedance amplifier[J]. Infrared and Laser Engineering, 2021, 50(9): 20210076. doi: 10.3788/IRLA20210076
Citation: Wang Ning, Zhao Baiqin, Wang Shuai, Wang Zhen. Photoelectric monolithic integration of PIN detector and transimpedance amplifier[J]. Infrared and Laser Engineering, 2021, 50(9): 20210076. doi: 10.3788/IRLA20210076

PIN探测器和跨阻放大器的光电单片集成

doi: 10.3788/IRLA20210076
详细信息
    作者简介:

    王宁,男,硕士生,主要从事红外探测器、BJT晶体管和模拟放大电路方面的研究

    赵柏秦,男,研究员,博士生导师,博士,主要从事微波声学、无源光波导器件、脉冲半导体激光器、硅光电池、砷化镓霍尔器件、物联网新型传感器件及应用模块、激光引信系统等方面的研究

  • 中图分类号: TN247

Photoelectric monolithic integration of PIN detector and transimpedance amplifier

  • 摘要: 设计了一种大面积、高响应度的硅基PIN探测器,PIN探测器的表面积为4.1 mm×13.8 mm,整体厚度为420 μm左右。PIN探测器的光敏面采用环形Al电极将光电流信号引出,通过在波长为860 nm的恒定激光光源下进行测试,其响应度为0.6 A/W。提出了一种全新的光电单片集成的可行性方法,即利用PIN探测器非光照区的本征I层面积,设计了一种与PIN探测器结构和工艺兼容的跨阻放大器,在保证了PIN探测器结构和性能没有发生改变的前提下,实现了PIN探测器和跨阻放大器的光电单片集成。最后在波长为860 nm、脉冲宽度为100 ns、工作频率为10 kHz的实际脉冲激光信号下对流片成功的PIN探测器和光电单片集成芯片的脉冲响应进行了对比测试。结果表明:在脉冲宽度基本没有发生变化的同时,光电单片集成芯片的脉冲电压信号相比于PIN探测器的脉冲光电流信号放大了1000倍,放大倍数和理论的跨阻阻值1000 Ω一致。该集成光电芯片应用在激光引信系统的激光接收模块中,通过光电单片集成可以提高PIN探测器上输出端信号的信噪比,增强系统的稳定性,同时也可以满足激光引信系统小型化发展的需要。
  • 图  1  激光接收模块结构图

    Figure  1.  Structure diagram of laser receiving system

    图  2  放大电路结构图

    Figure  2.  Structure diagram of amplifier circuit

    图  3  PIN探测器的表面结构图

    Figure  3.  Surface structure diagram of PIN detector

    图  4  PIN探测器的纵向结构图

    Figure  4.  Longitudinal structure diagram of PIN detector

    图  5  光电单片集成电路原理图

    Figure  5.  Schematic diagram of photoelectric monolithic integrated circuit

    图  6  光电单片集成工艺结构图

    Figure  6.  Process structure diagram of photoelectric monolithic integration

    图  7  PIN探测器性能测试。(a) I-V曲线;(b) C-V曲线;(c)光电响应曲线

    Figure  7.  PIN detector performance test. (a) I-V curve; (b) C-V curve; (c) Photoelectric response curve

    图  8  实际脉冲响应。(a) PIN探测器;(b)光电单片集成芯片

    Figure  8.  Real pulse voltage response. (a) PIN detector; (b) Optoelectronic monolithic integrated chip

  • [1] Tan Chaowen. Recent advances in optoelectronic integrated circuits [J]. Semiconductor Optoelectronics, 2000, 21: 15-18. (in Chinese)
    [2] Huang Beiju, Zhang Zan, Zhang Zanyun, et al. Research progress on monolithic integration of silicon based optoelectronics with microelectronics [J]. Micro/Nano Electronics and Intelligent Manufacturing, 2019, 1(3): 56-67. (in Chinese)
    [3] Yang Xin, Tan Kaizhou, Huang Shaochun, et al. A monolithic integrated device of a photodetector and a signal processor [J]. Microelectronics, 2019, 49(3): 347-350. (in Chinese)
    [4] Ye Yutang, Fan Chao. The progress in monolithic opto-electronic integrated circuits [J]. Research & Progress of SSE, 2010, 30(2): 298-303. (in Chinese)
    [5] Wang Rui. Compound guided system with active laser imaging and passive infrared imaging [J]. Chinese Optics, 2013, 6(4): 537-543. (in Chinese)
    [6] Li Jing, Mei Hao, He Chenglin, et al. Laser fuze anti-interference method based on pulse width modulation technique [J]. Infrared and Laser Engineering, 2020, 49(4): 0403007. (in Chinese) doi:  10.3788/IRLA202049.0403007
    [7] Chen Huimi, Liu Xinyang. Backscattering polarization characteristics of pulsed laser fuze with coaxial optical system in water fog [J]. Optics and Precision Engineering, 2015, 23(3): 627-631. (in Chinese)
    [8] Han Wei, Zheng Xiang, Zhao Baiqin. Design of miniaturized transmitting-receiving system for laser detection [J]. Infrared and Laser Engineering, 2017, 46(9): 0906008. (in Chinese) doi:  10.3788/IRLA201746.0906008
    [9] Feng Ying, Zhang He, Zhang Xiangjin. Electromagnetic interference technique of transmitter and receiver modules for pulsed laser fuse [J]. High Power Laser and Paricle Beams, 2011, 23(1): 249-254. (in Chinese) doi:  10.3788/HPLPB20112301.0249
    [10] Yang Chengcai, Ju Guohao, Chen Yongping. Study on the photo response of a CMOS sensor integrated with PIN photodiodes [J]. Chinese Optics, 2019, 12(5): 1077-1088. (in Chinese)
    [11] Shi Xiaofeng, Cheng Xiang, Cheng Chao, et al. Optical receiver based on BCD process for plastic optical fiber [J]. Optics and Precision Engineering, 2014, 22(7): 1716-1722. (in Chinese)
  • [1] 胡玮娜, 吕勇, 耿蕊, 李宇海, 牛春晖.  光电探测器表面损伤状态偏振成像式探测系统 . 红外与激光工程, 2022, 51(6): 20210629-1-20210629-9. doi: 10.3788/IRLA20210629
    [2] 俸志富, 张家洪, 李英娜, 赵振刚.  CMOS有源电感并联的前馈共栅跨阻放大电路 . 红外与激光工程, 2022, 51(6): 20210386-1-20210386-7. doi: 10.3788/IRLA20210386
    [3] 唐瑞鑫, 段存丽.  基于亚纳秒微片激光器的能量放大器的研究 . 红外与激光工程, 2022, 51(4): 20210200-1-20210200-5. doi: 10.3788/IRLA20210200
    [4] 姚猛, 叶继飞, 李兰, 高贺岩.  皮秒激光辐照硅基PIN光电二极管的瞬态响应信号分析 . 红外与激光工程, 2021, 50(S2): 20210305-1-20210305-6. doi: 10.3788/IRLA20210305
    [5] 杨大宝, 王俊龙, 张立森, 梁士雄, 冯志红.  330 GHz单片集成分谐波混频器 . 红外与激光工程, 2019, 48(2): 225001-0225001(5). doi: 10.3788/IRLA201948.0225001
    [6] 丁春楠, 叶茂, 夏显召, 谢绍禹, 李尧, 赵毅强.  面向LiDAR应用的APD单片前端读出电路设计 . 红外与激光工程, 2019, 48(S1): 21-26. doi: 10.3788/IRLA201948.S106004
    [7] 王聪, 吕冬翔.  晶体拉曼放大器的理论解析 . 红外与激光工程, 2018, 47(11): 1105007-1105007(6). doi: 10.3788/IRLA201847.1105007
    [8] 丘文夫, 林中晞, 苏辉.  单片集成的低暗电流1.3 μm激光二极管和探测器芯片 . 红外与激光工程, 2018, 47(12): 1220003-1220003(5). doi: 10.3788/IRLA201847.1220003
    [9] 徐正平, 金灿强, 俞乾, 徐宝腾, 白启帆, 张翼, 董艳芳, 孙大林.  用PIN探测器进行激光雷达参考光检测 . 红外与激光工程, 2018, 47(10): 1020002-1020002(7). doi: 10.3788/IRLA201847.1020002
    [10] 朱君, 秦柳丽, 宋树祥.  SPASER技术的MIM波导放大器特性分析 . 红外与激光工程, 2016, 45(3): 320002-0320002(7). doi: 10.3788/IRLA201645.0320002
    [11] 赵国芬, 赵毅强, 赵公元, 张志恒, 郭肇敏.  二极管型非制冷红外探测器的前端电路设计 . 红外与激光工程, 2016, 45(1): 104001-0104001(6). doi: 10.3788/IRLA201645.0104001
    [12] 李平, 李淘, 邓双燕, 李雪, 邵秀梅, 唐恒敬, 龚海梅.  不同退火处理的台面型In0.83Ga0.17As pin光电二极管暗电流分析 . 红外与激光工程, 2016, 45(5): 520002-0520002(5). doi: 10.3788/IRLA201645.0520002
    [13] 魏佳童, 陈立伟, 胡海帆, 刘志远.  基于硅与锗材料的改进集成雪崩光电二极管(英文) . 红外与激光工程, 2016, 45(S1): 188-193. doi: 10.3788/IRLA201645.S120002
    [14] 刘俊良, 李永富, 张春芳, 王祖强, 方家熊.  基于APD-PIN结电容平衡电路的门控单光子探测器 . 红外与激光工程, 2015, 44(11): 3181-3185.
    [15] 王巍, 武逶, 冯其, 颜琳淑, 王川, 王冠宇, 袁军, 王振.  应用于10Gb/s光接收机的全差分CMOS跨阻前置电路设计 . 红外与激光工程, 2015, 44(5): 1587-1592.
    [16] 代永红, 刘彦飞, 周浩天, 单欣, 艾勇.  空间相干光通信中平衡探测器灵敏度测试实验 . 红外与激光工程, 2015, 44(10): 3110-3116.
    [17] 田磊.  双补偿结构I-V 转换电路在红外接收芯片中的应用 . 红外与激光工程, 2014, 43(7): 2170-2174.
    [18] 李磊, 王建磊, 程小劲, 刘晶, 施翔春, 陈卫标.  低温重复率Yb:YAG 固体激光放大器 . 红外与激光工程, 2013, 42(5): 1170-1173.
    [19] 祖秋艳, 王玮冰, 黄卓磊, 何鑫, 陈大鹏.  二极管非制冷红外探测器及其读出电路设计 . 红外与激光工程, 2013, 42(7): 1680-1684.
    [20] 魏鹏, 朱耀明, 邓洪海, 唐恒敬, 李雪, 张永刚, 龚海梅.  台面型InP/InGaAs PIN 光伏探测器的p-InP低阻欧姆接触 . 红外与激光工程, 2011, 40(12): 2309-2313.
  • 加载中
图(8)
计量
  • 文章访问数:  401
  • HTML全文浏览量:  135
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-18
  • 修回日期:  2021-04-21
  • 刊出日期:  2021-09-23

PIN探测器和跨阻放大器的光电单片集成

doi: 10.3788/IRLA20210076
    作者简介:

    王宁,男,硕士生,主要从事红外探测器、BJT晶体管和模拟放大电路方面的研究

    赵柏秦,男,研究员,博士生导师,博士,主要从事微波声学、无源光波导器件、脉冲半导体激光器、硅光电池、砷化镓霍尔器件、物联网新型传感器件及应用模块、激光引信系统等方面的研究

  • 中图分类号: TN247

摘要: 设计了一种大面积、高响应度的硅基PIN探测器,PIN探测器的表面积为4.1 mm×13.8 mm,整体厚度为420 μm左右。PIN探测器的光敏面采用环形Al电极将光电流信号引出,通过在波长为860 nm的恒定激光光源下进行测试,其响应度为0.6 A/W。提出了一种全新的光电单片集成的可行性方法,即利用PIN探测器非光照区的本征I层面积,设计了一种与PIN探测器结构和工艺兼容的跨阻放大器,在保证了PIN探测器结构和性能没有发生改变的前提下,实现了PIN探测器和跨阻放大器的光电单片集成。最后在波长为860 nm、脉冲宽度为100 ns、工作频率为10 kHz的实际脉冲激光信号下对流片成功的PIN探测器和光电单片集成芯片的脉冲响应进行了对比测试。结果表明:在脉冲宽度基本没有发生变化的同时,光电单片集成芯片的脉冲电压信号相比于PIN探测器的脉冲光电流信号放大了1000倍,放大倍数和理论的跨阻阻值1000 Ω一致。该集成光电芯片应用在激光引信系统的激光接收模块中,通过光电单片集成可以提高PIN探测器上输出端信号的信噪比,增强系统的稳定性,同时也可以满足激光引信系统小型化发展的需要。

English Abstract

    • 光电单片集成芯片是指采用兼容的半导体工艺技术将半导体光器件(如激光器、探测器、光波导、调制器等)和电子器件(双极性晶体管、各种场效应晶体管等)制作在相同衬底上,形成具有光和电两种信号处理功能的集成芯片[1-2]。相比于传统的混合电路,光电单片集成电路有着噪声低、体积小、性能高、稳定性强等优点,满足了现代信息技术向高速化、微型化、多功能发展的要求,成为国内外光电单片集成技术研究的主流方向[3-4]

      激光引信技术是一种利用发射脉冲激光信号来探测目标,通过鉴别反射脉冲激光信号来达到探测目的的技术,激光引信系统主要包括激光发射模块和激光接收模块[5]。两个模块封装在同一金属管壳中,距离很近,因此发射模块在工作时,半导体激光器驱动电路产生的脉冲大电流会对激光接收模块造成强烈的电磁干扰。因为激光引信系统工作在外界环境中,会受到外界各种粒子的散射干扰,信号的强度会随着距离的增加急剧减少[6-7],所以当激光接收模块在探测远距离信号时,探测器接收到的光电流信号很小,探测器上输出端的光电流信号在通过金丝传给跨阻放大电路的过程中更容易受到电磁噪声的影响,甚至被电磁噪声所淹没[8-9]。为了防止激光接收模块中探测器探测的远距离微小光电流信号不被电磁噪声所淹没,需要提高探测器上输出端信号的信噪比。由于激光发射模块中的电磁干扰无法避免,所以必须提高探测器上输出端信号的大小。

      从分析激光接收模块的整体结构出发,设计了与激光接收模块中光学透镜结构和尺寸相匹配的大面积硅基PIN探测器,然后在保证PIN探测器结构和性能不发生改变的情况下,利用了PIN探测器多余的非光照区的本征I层面积,设计了一种跨阻放大器,通过PIN探测器和跨阻放大器的光电单片集成,可以将PIN探测器上输出端的光电流信号转换为放大之后的电压信号,然后再通过金丝传给主放大器及后续的电路处理。最后对流片成功的PIN探测器的性能进行了测试,并将流片成功的PIN探测器和光电单片集成芯片在实际的脉冲激光信号下进行了测试,得到了跨阻放大器对PIN探测器光电流信号的放大倍数。

    • 激光接收模块包括光学透镜、光电探测器、基于PCB板的运算放大器等,如图1所示。经目标反射回来的脉冲激光信号通过光学透镜汇聚在探测器的光照面上,然后将脉冲激光信号转换为脉冲电流信号,再通过金丝连线传给PCB板上的放大电路,最后对脉冲电流信号进行放大,金丝长度为6.5 mm。

      图  1  激光接收模块结构图

      Figure 1.  Structure diagram of laser receiving system

      图2是激光接收模块中PCB板上放大电路的结构图,整个放大电路由跨阻放大器和电压放大器组成,其中跨阻放大器具有一定的跨阻增益,将PIN探测器的脉冲光电流信号转化为脉冲电压信号,然后输入到下一级电压放大器,电压放大器将输入的脉冲电压信号进一步放大到可以被后续的相关电路所处理。每一级放大电路的输出端都会加一个隔直电容,来滤除探测器的暗电流噪声以及其他直流分量。

      图  2  放大电路结构图

      Figure 2.  Structure diagram of amplifier circuit

    • 为了提高激光接收模块的探测距离,增加探测器探测的光电流大小,设计了一种与激光接收模块光学透镜尺寸相匹配的大面积硅基PIN探测器。相比于普通的PN结探测器,此PIN探测器的优势在于其较宽的本征层可以吸收更多的光子,提高探测器的响应度,而且可以降低结电容,提高信号的响应频率[10-11]图3是PIN探测器的表面结构图,其中探测器的表面积为4.1 mm×13.8 mm,紫红色区域为光照区,其余地方为非光照区。图4是PIN探测器的纵向结构图,其中衬底为砷离子(As+)掺杂的N+硅衬底,厚度为380 μm,晶向为(111),电阻率为0.004 Ω·cm。本征I层为极小浓度磷离子(P+)掺杂的外延层,厚度为40 μm,电阻率为1100 Ω·cm。

      图  3  PIN探测器的表面结构图

      Figure 3.  Surface structure diagram of PIN detector

      图  4  PIN探测器的纵向结构图

      Figure 4.  Longitudinal structure diagram of PIN detector

      下面列举了PIN探测器的主要工艺步骤。

      (1) PECVD法沉积SiO2,光刻并在本征I层上湿法腐蚀出对准标记。

      (2) 重新沉积 SiO2作为离子注入掩蔽层,光刻出离子注入窗口,在本征层注入硼(B+)离子,形成PIN探测器的P+层,结深在200 nm左右。

      (3) 高温退火,退火温度500 ℃,时间10 min。

      (4) 重新沉积500 nm的SiO2作为钝化减反膜,套刻形成正面环形Al电极。

      (5) N+硅衬底的整个背面沉积Ti/Pd/Ag金属,作为背面电极。

    • 图5是光电单片集成的电路原理图,包括PIN探测器、NPN三极管和两个电阻,最后在输出端外接一个隔直电容。电路采用一级跨阻放大器将PIN探测器探测到的脉冲光电流信号进行放大,输出端最后输出的是放大之后的脉冲电压信号,其中跨阻RF和负载电阻RL的理论值为1000 Ω,所以跨阻放大器对PIN探测器的脉冲光电流信号的理论放大倍数为1000倍,电路的直流偏压为5 V。

      图  5  光电单片集成电路原理图

      Figure 5.  Schematic diagram of photoelectric monolithic integrated circuit

    • 图6是PIN探测器和跨阻放大器两者集成的结构图。从结构上来看,图6左半部分是PIN探测器的光照区,右半部分是PIN探测器的非光照区。因为要利用非光照区的本征I层来制作跨阻放大电路中需要的NPN三极管和电阻,而不是在标准的P型衬底上,所以首先必须在本征I层上通过离子注入形成两个P阱与本征I层进行隔离,然后在两个P阱中分别制作NPN三极管和电阻。考虑到横向NPN三极管的结构相比于纵向NPN三极管简单,工艺上较容易实现,所以采用了横向NPN三极管的结构。电阻是通过在P阱(电阻区)进行一次离子注入形成的,电阻两端由Al电极引出。可以看到PIN探测器的结构相比于图4中的结构并没有发生变化,只是将原来PIN探测器背面N+层的电极引到了上表面,与电路进行互连。

      图  6  光电单片集成工艺结构图

      Figure 6.  Process structure diagram of photoelectric monolithic integration

      下面列举了光电单片集成的主要工艺步骤。

      (1) PECVD法沉积SiO2,光刻并在本征I层上湿法腐蚀出对准标记。

      (2) 重新沉积 SiO2作为离子注入掩蔽层,光刻出离子注入窗口,在本征层注入硼(B+)离子,形成横向NPN三极管的基区P阱和电阻区P阱,结深在900 nm左右。

      (3) 高温退火,退火温度850 ℃,时间20 min。

      (4) 重新沉积SiO2作为离子注入掩蔽层,光刻出离子注入窗口,在本征层注入磷(P+)离子,分别形成横向NPN三极管的集电极、发射极和电阻,结深在350 nm左右。

      (5) 高温退火,退火温度800 ℃,时间20 min。

      (6) 重新沉积SiO2作为离子注入掩蔽层,光刻出离子注入窗口,在本征层注入硼(B+)离子,分别形成两个阱区的欧姆接触和PIN探测器的P+层,结深200 nm左右。

      (7) 高温退火,退火温度500 ℃,时间10 min。

      (8) 重新沉积SiO2作为湿法腐蚀本征层的掩蔽层,光刻出刻蚀窗口,刻蚀出金属接触孔。

      (9) 重新沉积500 nm厚的SiO2作为钝化减反膜,套刻形成金属电极互连。

      从工艺上来看,整套光电单片集成工艺主要包括七次光刻、三次离子及三次高温退火。工艺的参数决定了器件的性能,为了保证PIN探测器在工艺参数不发生改变的情况下,实现和横向NPN三极管以及电阻的工艺兼容,必须将PIN探测器的关键工艺即离子注入形成P+层和接下来的高温退火放到最后一次离子注入和高温退火工艺中做。因为PIN探测器P+层离子注入后的退火为500 ℃,相比于横向NPN三极管的基区以及发射极和集电极的退火温度较低,而且时间较短,所以退火之后对横向NPN三极管以及电阻的工艺参数影响较小,相反如果先做PIN探测器P+层离子注入以及高温退火,接下来不管是横向NPN三极管的基区退火温度和时间还是发射极和集电极退火温度和时间都将会严重改变PIN探测器的工艺参数,影响其性能。所以在设计光电单片集成芯片的工艺流程时,并没有改变PIN探测器的工艺流程。

      在光电单片集成设计中,从结构和工艺两方面都实现了PIN探测器和跨阻放大器两者的兼容,保证了PIN探测器的结构和性能没有发生改变。

    • 图7所示,测试得到了集成前流片成功的PIN探测器的I-V曲线、C-V曲线和光电响应曲线。图7(a)中PIN探测器的暗电流随反向偏压的增大而增大,当反偏在0~3 V之间时,反向暗电流大小在0~15 nA之间,暗电流很小。并且跨阻放大电路的输出端有隔直电容,如图4所示,所以暗电流对输出脉冲电压信号的影响可以忽略。

      图  7  PIN探测器性能测试。(a) I-V曲线;(b) C-V曲线;(c)光电响应曲线

      Figure 7.  PIN detector performance test. (a) I-V curve; (b) C-V curve; (c) Photoelectric response curve

      图7(b) C-V曲线上可以看到在PIN探测器反偏电压达到4 V时,PIN探测器两端的结电容开始趋于稳定,大小为92 pF。

      图7(c)是PIN探测器的光电响应曲线,是在恒定激光光源下测试的结果,所用红外激光波长是860 nm,分别测试不同光功率下PIN探测器直流光电流的大小,最后计算得到PIN探测器的响应度为0.6 A/W。

    • 为了得到光电集成芯片输出的脉冲电压信号相对于集成前PIN探测器脉冲光电流信号的放大倍数,此次实验搭建了真实的测试系统,所用信号源为脉冲激光信号,波长为860 nm、脉冲宽度为100 ns、工作频率为10 kHz、信号源和目标的距离设置为5 m。为了排除外界噪声对测试结果的影响,整个测试过程在黑暗环境下进行,结果如图8所示。

      图  8  实际脉冲响应。(a) PIN探测器;(b)光电单片集成芯片

      Figure 8.  Real pulse voltage response. (a) PIN detector; (b) Optoelectronic monolithic integrated chip

      图8(a)是集成前PIN探测器探测到的脉冲光电流信号,可以看到脉冲光电流信号大小为1.85 μA左右,脉冲宽度为110 ns,对信号源脉宽仅展宽了10 ns。在相同的测试条件下对光电单片集成芯片的脉冲响应进行了测试,如图8(b)所示,可以看到脉冲电压信号的脉冲宽度基本没有发生变化,大小为1.85 mV左右,相比于PIN探测器的光电流信号1.85 μA放大了1000倍,即跨阻放大器的跨阻增益为1000,跨阻增益和跨阻阻值的理论值1000 Ω一致。

    • 根据引信系统中激光接收模块的实际需要,提出了一种全新并且具有很强实用价值的光电单片集成的设计方法,即以PIN探测器器件为基础,在没有改变PIN探测器结构和性能的情况下,利用其非光照区的本征层面积集成了跨阻放大电路,并流片成功。最后测试得到跨阻放大器对PIN探测器脉冲光电流信号放大了1000倍,即与混合电路相比,在相同的探测距离下,通过将PIN探测器和跨阻放大器进行光电单片集成,使得PIN探测器上输出端信号的信噪比提高了三个数量级,从而可以提高激光接收模块的抗干扰能力,同时也可以减少系统面积。

      基于现有的数据和经验,一方面可以通过沟槽工艺将PIN探测器的光照区和非光照区进行隔离来进一步减少其暗电流;另一方面可以设计多级放大电路,通过多层金属布线的工艺将整个放大电路都集成到PIN探测器的非光照区上,实现激光接收模块中PIN探测器和整个放大电路的光电单片集成。

参考文献 (11)

目录

    /

    返回文章
    返回