留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于亚纳秒微片激光器的能量放大器的研究

唐瑞鑫 段存丽

唐瑞鑫, 段存丽. 基于亚纳秒微片激光器的能量放大器的研究[J]. 红外与激光工程, 2022, 51(4): 20210200. doi: 10.3788/IRLA20210200
引用本文: 唐瑞鑫, 段存丽. 基于亚纳秒微片激光器的能量放大器的研究[J]. 红外与激光工程, 2022, 51(4): 20210200. doi: 10.3788/IRLA20210200
Tang Ruixin, Duan Cunli. Research on energy amplifier based on sub-nanosecond microchip laser[J]. Infrared and Laser Engineering, 2022, 51(4): 20210200. doi: 10.3788/IRLA20210200
Citation: Tang Ruixin, Duan Cunli. Research on energy amplifier based on sub-nanosecond microchip laser[J]. Infrared and Laser Engineering, 2022, 51(4): 20210200. doi: 10.3788/IRLA20210200

基于亚纳秒微片激光器的能量放大器的研究

doi: 10.3788/IRLA20210200
详细信息
    作者简介:

    唐瑞鑫,男,硕士生,主要从事全固态激光放大方面的研究

  • 中图分类号: TN248

Research on energy amplifier based on sub-nanosecond microchip laser

  • 摘要: 高脉冲能量和窄脉冲宽度的激光放大器可以应用在诸多领域,例如激光加工、激光医疗美容和激光雷达。种子源激光器与行波放大结构相结合的主振荡功率放大(MOPA)技术,既能保证输出的脉冲激光相关特性(如脉宽和重复频率等)与种子源特性一致,又能实现激光输出能量的放大。因此MOPA技术成为激光放大器工程应用中的主要技术。本课题针对医疗美容对亚纳秒级大能量激光放大器的需求,研制了一台基于亚纳秒微片固体激光器的激光放大器。首先,采用亚纳秒被动调Q微片固体激光器作为种子源。种子源激光器在重复频率为10 Hz,脉冲宽度为487.3 ps时输出能量为190 μJ的1064 nm种子光。然后,利用自制的两个氙灯泵浦Nd: YAG模块作为主放大器对亚纳秒激光脉冲能量进行放大,对放大过程自激振荡产生的能量实现了抑制,有效地提高了放大过程中的能量转换效率。最终,得到了波长1064 nm和532 nm可切换输出,在重复频率为10 Hz时,获得了脉冲宽度496.4 ps,脉冲能量561 mJ@1064 nm,330 mJ@532 nm,能量稳定性2%且光斑均匀的亚纳秒激光输出。
  • 图  1  种子源装置示意图

    Figure  1.  Layout of the seed source

    图  2  种子源输出脉冲激光波形图

    Figure  2.  Profile of the pulse of the seed source

    图  3  激光放大器装置示意图(L1为凹透镜,L2为凸透镜,FI为法拉第隔离器,HWP为半波片,M1、M2为45°反射镜,TFP为薄膜偏振片,AM1为一级放大模块,QWP为四分之一波片,M3为全反射镜,M4、M5为30°反射镜,L3为凹透镜,L4为凸透镜,AM2为二级放大模块)

    Figure  3.  Layout of the experimental setup (L1, Concave lens; L2, Convex lens; FI, Faraday-isolator; HWP, Half wave plate; M1、M2, 45° reflection mirror; TFP, Thin film polarizer; AM1, Amplifier module Ⅰ; QWP, Quarter-wave plate; M3; Total reflection mirror; M4, M5, 30° reflection mirror; L3, Concave lens; L4, Convex lens; AM2, Amplifier module Ⅱ)

    图  4  激光放大器实物图

    Figure  4.  Photo of the laser amplifier

    图  5  输出能量随泵浦电压关系图

    Figure  5.  Relationship between output energy and pump voltage

    图  6  532 nm输出能量随泵浦电压关系图

    Figure  6.  Relationship between 532 nm output energy and pump voltage

    图  7  激光输出能量稳定性测试

    Figure  7.  The stability of output energy

    图  8  放大激光脉宽波形图

    Figure  8.  Profile of the pulse of the amplifier

    图  9  激光光斑图:(a)整形前激光光斑图;(b)整形后脉冲激光光斑

    Figure  9.  Photo of the light spot: (a) Photo of before optimizing the light spot; (b) Photo of after optimizing the light spot

  • [1] Kilmer J, Iadevaia A, Yin Y. Laser sources for lidar applications[C]//Proceedings of SPIE, 2012, 8379: 837912.
    [2] Wang Feiyue, Zou Tingting, Xin Wei, et al. Control of the wettability of graphene oxide surface with femtosecond laser irradiation [J]. Infrared and Laser Engineering, 2020, 49(12): 20201064. (in Chinese) doi:  10.3788/IRLA20201064
    [3] Anderson R R, Parrish J A. Selective photothermolysis: Precise microsurgery by selective absorption of pulsed radiation [J]. Science, 1983, 220(4596): 524-527. doi:  10.1126/science.6836297
    [4] Du Xinbiao, Chen Meng, Ren Junjie, et al. Research on 1 kHz high-power sub-nanosecond solid-state laser amplifier [J]. Infrared and Laser Engineering, 2020, 49(3): 0305001. (in Chinese) doi:  10.3788/IRLA202049.0305001
    [5] Duan Jialin, Li Xudong, Wu Wentao, et al. Research on LD pumped 1.06 μm burst-mode laser and the amplification systems [J]. Infrared and Laser Engineering, 2019, 48(1): 0105003. (in Chinese) doi:  10.3788/IRLA201948.0105003
    [6] Wang Chao, Wei Hui, Wang Jiangfeng, et al. 1 J, 1 Hz lamp-pumped high-gain Nd: Phosphate glass laser amplifier [J]. Chinese Optics Letters, 2017, 15(1): 011401. doi:  10.3788/COL201715.011401
    [7] Liu Jing, Li Lei, Shi Xiangchun, et al. High-beam-quality, 5.4 J, 5- Hz diode-pumped Nd: YAG active mirror laser amplifier [J]. Chinese Optics Letters, 2018, 16(12): 121402. doi:  10.3788/COL201816.121402
    [8] Yahia Vincent, Taira Takunori. High brightness energetic pulses delivered by compact microchip-MOPA system [J]. Optics Express, 2018, 26(7): 8609-8618. doi:  10.1364/OE.26.008609
    [9] Zhou Yiping, Li Xudong, Wu Wentao, et al. 500 Hz, 47.1 mJ, sub-nanosecond MOPA laser system [J]. Optics & Laser Technology, 2021, 134: 106592. doi:  10.1016/j.optlastec.2020.106592
    [10] 蓝信钜. 激光技术-第3版[M]. 科学出版社, 2009.

    Lan Xinju. Laser Technology[M]. Beijing: Science Press, 2009. (in Chinese)
    [11] W. 克希耐尔. 固体激光工程[M]. 科学出版社, 2002.

    Koechner W. Solid State Laser Engineering[M]. Beijing: Science Press, 2009. (in Chinese)
    [12] 刘天宇. 软边光阑在高功率固体激光器中应用的工程化研究[D]. 南京: 南京理工大学, 2014.

    Liu Tianyu. Engineering research on the application of soft-edge aperture in high-power solid-state lasers[D]. Nanjing: Nanjing University of Science and Technology, 2014. (in Chinese)
  • [1] 段良友, 刘贞, 沈琪皓, 何幸锴, 周鼎富, 张永科.  单频光纤放大器中泵浦作用的相位噪声 . 红外与激光工程, 2023, 52(1): 20220332-1-20220332-10. doi: 10.3788/IRLA20220332
    [2] 白振旭, 郝鑫, 郑浩, 陈晖, 齐瑶瑶, 丁洁, 颜秉政, 崔璨, 王雨雷, 吕志伟.  高功率自由空间拉曼放大技术研究进展(特邀) . 红外与激光工程, 2023, 52(8): 20230337-1-20230337-13. doi: 10.3788/IRLA20230337
    [3] 王怡哲, 喻学昊, 刘墨林, 朱能伟, 游利兵, 方晓东.  低抖动准分子激光放大器光源的研究 . 红外与激光工程, 2023, 52(3): 20220468-1-20220468-7. doi: 10.3788/IRLA20220468
    [4] 李凯, 宋长禹, 岳剑峰, 贾梦瑜, 许志鹏, 吴頔, 曹晨, 白振旭, 于宇, 王雨雷, 吕志伟.  亚纳秒Zig-Zag板条激光器实现500 Hz焦耳量级输出 . 红外与激光工程, 2023, 52(8): 20230423-1-20230423-4. doi: 10.3788/IRLA20230423
    [5] 孟祥瑞, 文瀚, 陈浩伟, 孙博, 陆宝乐, 白晋涛.  波长可切换窄线宽单频掺镱光纤激光器(特邀) . 红外与激光工程, 2022, 51(6): 20220325-1-20220325-8. doi: 10.3788/IRLA20220325
    [6] 姚天甫, 范晨晨, 肖虎, 黄良金, 冷进勇, 周朴.  LD泵浦拉曼光纤放大器首次实现高亮度激光输出 . 红外与激光工程, 2022, 51(6): 20220293-1-20220293-2. doi: 10.3788/IRLA20220293
    [7] 张逸文, 蔡宇, 苑莉薪, 胡明列.  基于循环神经网络的超短脉冲光纤放大器模型(特邀) . 红外与激光工程, 2022, 51(1): 20210857-1-20210857-7. doi: 10.3788/IRLA20210857
    [8] 王丽莎, 孙松松, 闫炜, 瞿娇娇, 王勇.  L波段可切换双波长高能量脉冲光纤激光器 . 红外与激光工程, 2021, 50(7): 20200370-1-20200370-5. doi: 10.3788/IRLA20200370
    [9] 杨思敏, 汪徐德, 孙梦秋, 梁勤妹.  波长可切换可调谐耗散孤子锁模掺镱光纤激光器 . 红外与激光工程, 2020, 49(10): 20200026-1-20200026-6. doi: 10.3788/IRLA20200026
    [10] 杜鑫彪, 陈檬, 任俊杰, 高小强.  1 kHz高倍率亚纳秒全固态激光放大器研究 . 红外与激光工程, 2020, 49(3): 0305001-0305001-5. doi: 10.3788/IRLA202049.0305001
    [11] 颜凡江, 杨策, 陈檬, 桑思晗, 李梦龙, 蒙裴贝.  高重频高峰值功率窄线宽激光放大器 . 红外与激光工程, 2019, 48(2): 206002-0206002(5). doi: 10.3788/IRLA201948.0206002
    [12] 崔建丰, 邬小娇, 李福玖, 卢春良, 岱钦, 李业秋, 张鹏, 张善春.  高能量MOPA脉宽可调激光器 . 红外与激光工程, 2019, 48(4): 405005-0405005(5). doi: 10.3788/IRLA201948.0405005
    [13] 段加林, 李旭东, 武文涛, 林森, 樊荣伟, 董志伟, 周志刚, 陈德应.  LD泵浦Nd:YAG 1.06 μm脉冲串激光及放大研究 . 红外与激光工程, 2019, 48(1): 105003-0105003(5). doi: 10.3788/IRLA201948.0105003
    [14] 丁香栋, 何巍, 姚齐峰, 骆飞, 祝连庆.  采用可调Mach-Zehnder滤波的波长可切换掺铒光纤激光器 . 红外与激光工程, 2017, 46(10): 1005006-1005006(6). doi: 10.3788/IRLA201757.1005006
    [15] 史伟, 房强, 李锦辉, 付士杰, 李鑫, 盛泉, 姚建铨.  激光雷达用高性能光纤激光器 . 红外与激光工程, 2017, 46(8): 802001-0802001(5). doi: 10.3788/IRLA201746.0802001
    [16] 王丹燕, 姜海明, 谢康.  双向多泵浦光纤拉曼放大器偏振相关增益研究 . 红外与激光工程, 2016, 45(2): 222003-0222003(5). doi: 10.3788/IRLA201645.0222003
    [17] 张德平, 吴超, 张蓉竹, 孙年春.  LD 端面泵浦分离式放大器结构的热效应研究 . 红外与激光工程, 2015, 44(8): 2250-2255.
    [18] 戚刚, 熊水东, 梁迅, 林惠祖.  用于微弱信号放大的高性能窄线宽纳秒脉冲光纤放大器 . 红外与激光工程, 2015, 44(11): 3234-3237.
    [19] 林桢, 任国斌, 郑斯文, 朱博枫, 彭万敬, 简水生.  基于光纤拉锥及相位调制的可切换多波长掺铒光纤激光器 . 红外与激光工程, 2014, 43(10): 3262-3268.
    [20] 华弋, 肖晓晟.  波长可调节全正色散掺镱锁模光纤激光器的放大特性 . 红外与激光工程, 2014, 43(12): 3924-3927.
  • 加载中
图(9)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  105
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 修回日期:  2021-05-16
  • 刊出日期:  2022-05-06

基于亚纳秒微片激光器的能量放大器的研究

doi: 10.3788/IRLA20210200
    作者简介:

    唐瑞鑫,男,硕士生,主要从事全固态激光放大方面的研究

  • 中图分类号: TN248

摘要: 高脉冲能量和窄脉冲宽度的激光放大器可以应用在诸多领域,例如激光加工、激光医疗美容和激光雷达。种子源激光器与行波放大结构相结合的主振荡功率放大(MOPA)技术,既能保证输出的脉冲激光相关特性(如脉宽和重复频率等)与种子源特性一致,又能实现激光输出能量的放大。因此MOPA技术成为激光放大器工程应用中的主要技术。本课题针对医疗美容对亚纳秒级大能量激光放大器的需求,研制了一台基于亚纳秒微片固体激光器的激光放大器。首先,采用亚纳秒被动调Q微片固体激光器作为种子源。种子源激光器在重复频率为10 Hz,脉冲宽度为487.3 ps时输出能量为190 μJ的1064 nm种子光。然后,利用自制的两个氙灯泵浦Nd: YAG模块作为主放大器对亚纳秒激光脉冲能量进行放大,对放大过程自激振荡产生的能量实现了抑制,有效地提高了放大过程中的能量转换效率。最终,得到了波长1064 nm和532 nm可切换输出,在重复频率为10 Hz时,获得了脉冲宽度496.4 ps,脉冲能量561 mJ@1064 nm,330 mJ@532 nm,能量稳定性2%且光斑均匀的亚纳秒激光输出。

English Abstract

    • 高能量、亚纳秒脉宽并且结构紧凑的激光系统对许多应用都很有吸引力,包括激光雷达[1]、激光加工[2]。它们还可用于在各种应用中有效地将波长转换为绿色波长,例如激光美容[3]。对于高能量、窄脉宽的激光器大多采用主振荡器功率放大(MOPA)技术来放大短脉冲宽度激光脉冲的输出能量[4-5]

      2017年,汪超等人实现了一个四灯泵浦钕玻璃四通放大结构的MOPA系统,使用全光纤激光器获得波长为1053nm,脉冲能量为1nJ的种子光,经过氙灯泵浦钕玻璃棒四通放大器后,获得的脉冲激光输出最大能量为1 J[6]。2018年,刘晶等人展示了一个纳秒MOPA系统,种子源在脉冲宽度为12 ns,重频为5 Hz,波长为1064 nm时,输出脉冲能量为10 mJ的种子光。采用三通Nd:YAG板条结构作为主放大级对种子光进行放大。最终,激光系统在泵浦能量为26.8 J,输出频率为5 Hz,输出脉冲宽度11.3 ns时,获得的纳秒脉冲激光输出最大脉冲能量5.4 J[7]。2018年,Vincent Yahia等人报道了一台光纤耦合激光二极管端面泵浦Nd:YAG棒状结构的高亮度亚纳秒MOPA激光器,激光系统在输出脉冲宽度为600 ps,重复频率为10 Hz,输出波长为1064 nm时,获得的亚纳秒脉冲激光输出脉冲能量为235 mJ[8]。2020年,周一平等人采用半导体激光器侧面泵浦Nd:YAG棒状结构亚纳秒MOPA系统,获得了脉冲宽度为730 ps,重复频率20 Hz,脉冲能量203 mJ的亚纳秒激光输出[9]。然而,这些研究未能实现在10 Hz的重复频率下亚纳秒激光的脉冲能量大于500 mJ且波长可切换。

      文中研究提出了一种采用亚纳秒微片激光器的主振荡器-功率放大(MOPA)系统。采用氙灯泵浦二级放大实验方案,将重复频率为10 Hz,脉冲宽度487.3 ps,脉冲能量为190 μJ的亚纳秒种子激光,放大得到脉冲宽度496.4 ps,脉冲能量561 mJ@1064 nm,330 mJ@532 nm的亚纳秒激光脉冲输出,激光系统在180 min的工作时间内,能量稳定性小于2%。研究中开发的波长可切换激光系统可用于激光医疗美容应用。

    • 亚纳秒激光MOPA系统种子源采用激光二极管泵浦的被动调Q微片固体激光器,其结构如图1所示。

      图  1  种子源装置示意图

      Figure 1.  Layout of the seed source

      泵浦源为光纤耦合半导体激光器,输出波长为808 nm,纤芯直径105 μm,数值孔径0.22。激光介质Nd:YAG晶体与可饱和吸收体Cr4+:YAG键合,采用铜热沉贴合散热。光纤耦合半导体激光器发出泵浦光,泵浦光由光纤输出后经准直聚焦系统准直后对晶体进行泵浦,输出波长为1064 nm,脉冲能量190 μJ,脉冲宽度487.3 ps的脉冲激光,其输出脉冲宽度如图2所示。

      图  2  种子源输出脉冲激光波形图

      Figure 2.  Profile of the pulse of the seed source

      亚纳秒激光MOPA系统和实物如图3图4所示。MOPA结构采用二级放大,采用两个氙灯泵浦Nd:YAG模块放大亚纳秒激光脉冲的脉冲能量,一级放大采用尺寸为7 mm×7 mm×110 mm,Nd3+掺杂浓度为0.8%的晶体棒,二级放大采用尺寸为8 mm×8 mm×110 mm,Nd3+掺杂浓度为0.8%的晶体棒。为了防止放大器中的回程光损坏种子源,在种子源和一级放大器之间放置法拉第光学隔离器。

      图  3  激光放大器装置示意图(L1为凹透镜,L2为凸透镜,FI为法拉第隔离器,HWP为半波片,M1、M2为45°反射镜,TFP为薄膜偏振片,AM1为一级放大模块,QWP为四分之一波片,M3为全反射镜,M4、M5为30°反射镜,L3为凹透镜,L4为凸透镜,AM2为二级放大模块)

      Figure 3.  Layout of the experimental setup (L1, Concave lens; L2, Convex lens; FI, Faraday-isolator; HWP, Half wave plate; M1、M2, 45° reflection mirror; TFP, Thin film polarizer; AM1, Amplifier module Ⅰ; QWP, Quarter-wave plate; M3; Total reflection mirror; M4, M5, 30° reflection mirror; L3, Concave lens; L4, Convex lens; AM2, Amplifier module Ⅱ)

      图  4  激光放大器实物图

      Figure 4.  Photo of the laser amplifier

    • 种子源在重复频率10 Hz,波长1064 nm,得到了脉冲能量190 μJ的激光输出,测得种子光通过法拉第隔离器后脉冲能量达到180 μJ,使用示波器测得脉宽为487.3 ps,如图2所示。

      在获得亚纳秒种子激光输出后,种子光进入二级放大器实现放大。在放大器泵浦脉宽为200 μs,经氙灯泵浦Nd:YAG模块二级放大后,其输出激光脉冲能量随泵浦电压变化如图5所示。

      图  5  输出能量随泵浦电压关系图

      Figure 5.  Relationship between output energy and pump voltage

      从实验结果来看,在放大级泵浦电压达到1000 V时,得到了输出脉冲能量为561 mJ激光输出,种子源能量被放大了3117倍,能满足医疗美容领域对激光放大器的要求。

      为了实现激光放大器波长可切换输出,文中采用13 mm×13 mm×5 mm KTP晶体作为倍频所需晶体,放大后输出的脉冲激光经过一扩束系统进入KTP晶体实现倍频。由于KTP晶体倍频效率无法达到100%,因此倍频后输出的脉冲激光包含1064 nm和532 nm两种光,这对应用有很大的干扰。文中课题在KTP倍频晶体后加入滤光片,只有波长为532 nm的脉冲激光能够输出。图6所示为532 nm输出激光脉冲能量随泵浦电压的变化。

      图  6  532 nm输出能量随泵浦电压关系图

      Figure 6.  Relationship between 532 nm output energy and pump voltage

      针对放大后的输出脉冲激光进行能量稳定性测试,1064 nm和532 nm输出激光脉冲能量随时间的变化如图7所示。在泵浦电压为1000 V条件下,持续工作180 min,每20 min记录一个输出脉冲激光能量值,得到该激光放大器的稳定性为2%,激光放大器的输出脉冲激光能量和能量稳定性都可以满足医疗美容领域的应用需求。

      图  7  激光输出能量稳定性测试

      Figure 7.  The stability of output energy

      当放大器使用未切倾角的Nd:YAG晶体棒,在一级双程放大中,Nd:YAG晶体的一个端面与全反射镜形成了腔,存在严重的自激振荡效应,展宽了种子源产生的激光脉冲的脉冲宽度,严重影响了激光主振荡器的稳定工作和输出脉宽。无种子光注入时,观察到了自激现象,会消耗放大器中的反转粒子产生的能量,降低放大器的增益,成为限制放大器性能的主要因素。实验中测得在泵浦电压为1000 V时,自激光的能量最大可达43 mJ。可以将棒的两端面磨成较小的斜角,使棒端面反射的光线不再返回棒中。假定棒直径为D,长度为L,斜角为α。则:$ \alpha = \arctan (D/L)$[10]。将一级放大的Nd:YAG晶体棒的端面切3.6°倾角,二级放大的Nd:YAG晶体棒的端面切4.2°倾角来抑制自激振荡产生的损耗,避免影响激光输出能量,并且将Nd:YAG晶体的两个端面均镀上1064 nm增透膜提高转化效率。当泵浦电压为1000时自激光从43 mJ降到1.07 mJ,自激振荡效应得到很好的抑制。

      实验中,采用光电二极管和示波器对二级单程放大中的输出1064 nm激光脉冲宽度进行测量,二级单程放大后输出激光脉宽波形图如图8所示。测得放大后的脉冲激光脉冲宽度为496.4 ps,而种子源激光脉冲宽度为487.3 ps,激光脉冲宽度有一定的展宽,这是因为放大器对激光脉冲产生时间畸变引起的[11]

      采用Coherent光束质量分析仪对二级单程放大中的输出脉冲激光光斑进行测量,如图9(a)9(b)所示。整形前光斑直径为6.5 mm,均匀度为40%,光斑均匀度较低,能量分布不均匀,不适用于激光美容的应用。为了使放大后的脉冲激光均匀性提升,在放大器输出端加入扩束准直系统对光斑进行扩束整形,并加入软边光阑[12]使光斑能量分布均匀,无强心,整形后光斑均匀度达到80%,光斑直径为12.5 mm,可以满足激光医疗美容的应用。

      图  8  放大激光脉宽波形图

      Figure 8.  Profile of the pulse of the amplifier

      图  9  激光光斑图:(a)整形前激光光斑图;(b)整形后脉冲激光光斑

      Figure 9.  Photo of the light spot: (a) Photo of before optimizing the light spot; (b) Photo of after optimizing the light spot

    • 文中研究了一种高能亚纳秒MOPA激光系统。研究并抑制了激光放大器中的自激振荡效应。采用激光二极管泵浦的被动调Q微片固体激光器获得了脉冲宽度约为487.3 ps、重复频率为10 Hz的亚纳秒激光脉冲。采用氙灯泵浦二级放大结构,亚纳秒激光的脉冲宽度约为496.4 ps,脉冲能量达到561 mJ@1064 nm,330 mJ@532 nm,能量稳定性为2%。对放大后的激光光斑均匀性进行了研究,放大后光斑均匀度达到80%。高脉冲能量,波长可切换亚纳秒MOPA激光系统是一个有前途的激光器,可用于激光医疗美容应用。

参考文献 (12)

目录

    /

    返回文章
    返回