留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中红外大能量高功率周期量级光学参量啁啾脉冲放大的发展及应用(特邀)

何林珍 田坎 杨雪梅 梁厚昆

何林珍, 田坎, 杨雪梅, 梁厚昆. 中红外大能量高功率周期量级光学参量啁啾脉冲放大的发展及应用(特邀)[J]. 红外与激光工程, 2021, 50(8): 20210396. doi: 10.3788/IRLA20210396
引用本文: 何林珍, 田坎, 杨雪梅, 梁厚昆. 中红外大能量高功率周期量级光学参量啁啾脉冲放大的发展及应用(特邀)[J]. 红外与激光工程, 2021, 50(8): 20210396. doi: 10.3788/IRLA20210396
He Linzhen, Tian Kan, Yang Xuemei, Liang Houkun. Development and application of mid-infrared high-energy, high-power, few-cycle optical parametric chirped pulse amplifier (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210396. doi: 10.3788/IRLA20210396
Citation: He Linzhen, Tian Kan, Yang Xuemei, Liang Houkun. Development and application of mid-infrared high-energy, high-power, few-cycle optical parametric chirped pulse amplifier (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210396. doi: 10.3788/IRLA20210396

中红外大能量高功率周期量级光学参量啁啾脉冲放大的发展及应用(特邀)

doi: 10.3788/IRLA20210396
详细信息
    作者简介:

    何林珍,女,硕士生,主要从事中红外超快激光方面的研究

    通讯作者: 梁厚昆,男,教授,博士,主要从事超快激光、中红外激光、非线性光学与随机激光等方面的研究。
  • 中图分类号: TN24

Development and application of mid-infrared high-energy, high-power, few-cycle optical parametric chirped pulse amplifier (Invited)

  • 摘要: 近十年来,超强超短脉冲是激光光学发展的一个重要趋势。尤其是在中红外(MIR)波段,由于中红外波长具有更大的有质动力并且其光谱范围几乎包含了所有分子“指纹”共振峰,这使得中红外激光的研究在强场物理、中红外光谱学、材料加工以及生物医学研究等领域中至关重要。目前已经有许多比较成熟的激光技术可以对脉冲进行整形、放大,例如差频(DFG)、啁啾脉冲放大(CPA)、光学参量放大技术(OPA)以及光学参量啁啾脉冲放大(OPCPA)等。利用OPCPA技术具有的高放大增益、高信噪比、宽增益带宽的优点在高非线性系数的非线性晶体中进行脉冲放大已经成为当前获取超强超短中红外脉冲的主要手段之一。文中总结了利用OPCPA技术在2~20 μm波长范围内产生和放大MIR少周期脉冲的研究进展,并对其在强场物理、分子频谱探测以及生物医学方面的应用进行了简要的阐述。
  • 图  1  (a) 2.1 μm少周期OPCPA系统的示意图;(b)测量(蓝色)和恢复(红色)的光谱强度和相位(黑色虚线),以及(c)测量的时间强度和相位。插图:第三阶段后测量的空间强度剖面[7]

    Figure  1.  (a) Schematic of 2.1 μm few-cycle OPCPA system; (b) Measured (blue) and retrieved (red) spectral intensity and phase (dashed black), and (c) measured temporal intensity and phase. Inset: measured spatial intensity profile after the third stage[7]

    图  2  (a) 2.2 μm OPCPA系统的示意图。右上角的插图显示了系统的长期输出稳定性和圆柱形整形望远镜后的光束轮廓。(b)恢复的放大器输出脉冲形状。(c)蓝线,测量的光谱;蓝虚线,恢复的光谱;橙线,恢复的相位[8]

    Figure  2.  (a) 2.2 μm OPCPA layout. The inset on the top right shows the long-term output stability of the system and beam profile after cylindrical reshaping telescopes. (b) The retrieved pulse shape of the amplifier output. (c) Blue line, measured spectrum; blue-dashed line, retrieved spectrum; orange line, retrieved phase[8]

    图  3  (a) 3.9 μm OPCPA 系统的示意图;(b)分别测得最后一级OPCPA后的信号光和闲频光的光谱。绿色虚线是KTA晶体的透射光谱[14]

    Figure  3.  (a) Layout of the 3.9 μm OPCPA system; (b) Spectra of the signal and idler pulses after the last OPCPA stage measured, respectively. The dotted green curve is the transmission spectrum of the KTA crystal[14]

    图  4  (a)高能量MIR OPCPA系统装置图。种子由双色光纤前端和DFG级组合产生。然后,拉伸后在前置放大器和两个增强放大器中对MIR脉冲进行连续放大。最大的转换效率是通过多次使用泵浦光和单独定制的种子到泵浦光脉冲持续时间来实现的。MIR输出脉冲在一个大容量拉伸器中被压缩。(b)使用Ar填充的ARR-PCF将脉冲最终压缩到单个光学周期。MIR-OPCPA系统的输出特性。MIR输出脉冲的SHG-FROG恢复。(c)光谱的振幅和相位以及(d)时间振幅和瞬时频率。(e)在30 min内测量的脉冲间功率稳定性。插图显示输出光束轮廓[13]

    Figure  4.  (a) Setup of the high-power, MIR OPCPA system. The seed is generated by a two-color fiber front-end in combination with a DFG stage. Afterward, the MIR pulses are stretched and consecutively amplified in a preamplifier and two booster amplifiers. Maximum conversion efficiencies are achieved by multiple use of the pump beam and by individually tailored seed-to-pump pulse durations. The MIR output is compressed in a bulk stretcher and (b) the final compression to a single optical cycle is performed using an Ar-filled ARR-PCF. Output characteristics of the MIR OPCPA system. SHG-FROG retrieval of the MIR output pulses, showing (c) the spectral amplitude and phase, and (d) the temporal amplitude and instantaneous frequency. (e) The pulse-to-pulse power stability measured over 30 min. The inset shows the output beam profile[13]

    图  5  (a) 4 μm OPCPA 系统以及其后压缩系统简图;(b)脉宽为21.5 fs的半高宽脉冲时间剖面图和(c)重建频谱[15]

    Figure  5.  (a) Schematic of the 4 μm OPCPA and postcompression system; (b) Pulse temporal profile of 21.5 fs FWHM duration and (c) reconstructed spectrum[15]

    图  6  (a)高能高平均功率3 µm OPCPA平顶光束整形示意图。通过周期性极化铌酸锂(PPLN)和KTA晶体,从三级OPCPA前置放大器产生中心在3 μm的MIR脉冲并放大到300 μJ。第四级OPCPA通过平顶光束整形来提高MIR输出,提高参量效率。第四级OPCPA的高斯泵浦光束入射到由相位板和聚焦透镜组成的平顶光束整形器,在透镜的成像平面上形成平顶泵浦光束。利用平顶泵浦来放大前3级OPCPA系统产生的高斯闲频光束,使得产生3 µm的高能高平均功率平顶输出。在KTA晶体上测量了带平顶光束整形器和不带平顶光束整形器的泵浦光剖面(b)和(c)。(d)测量了利用平顶(红色)和高斯(黑色)光束剖面泵浦OPCPA系统产生3 μm闲频光脉冲能量。利用平顶光束和高斯光束进行泵浦获得了2.7 mJ和1.45 mJ的MIR脉冲能量,相当于第4级OPCPA系统的的泵浦-闲频效率分别为7%和13.5%[10]

    Figure  6.  (a) Schematic of flat-top beam shaping of the high-energy and high-average-power 3 µm OPCPA. The MIR pulses centered at 3 µm are generated and amplified to 300 µJ from 3-stage OPCPA preamplifiers via periodically poled lithium niobate (PPLN) and KTA crystals. The 4th OPCPA stage is designed to boost up the MIR output and enhance the parametric efficiency through the flat-top beam shaping. The Gaussian pump beam of the 4th-stage OPCPA is sent to a flat-top beam shaper consisting of a phase plate and a focus lens, and the flat-top pump beam is formed at the imaging plane of the lens. The Gaussian idler beam generated from the first-3 OPCPA stages is amplified with a flat-top pump, producing a high-energy and high-average-power flat-top-like 3 µm output. The measured pump beam profiles (b) with and (c) without the flat-top beam shaper, on the KTA crystal. The cross section beam profiles on the x and y axes are included too. (d) The pulse energy measurements of the 3 µm idler pulse from the OPCPA with flat-top (red) and Gaussian (black) pump beam profiles. 2.7 mJ and 1.45 mJ MIR pulse energy are obtained from the flat-top and Gaussian pump, corresponding to 7% and 13.5% pump-to-idler efficiency for the 4th-OPCPA stage, respectively[10]

    图  7  基于MgO:LiNbO3晶体的中红外DC-OPA系统装置图[16]

    Figure  7.  Experimental setup of a MIR DC-OPA laser system with MgO:LiNbO3 crystals[16]

    图  8  2.8 μm激光系统的装置示意图[17]

    Figure  8.  Schematic layout of the 2.8 µm laser system[17]

    图  9  DC-OPA演示原理性实验示意图[18]

    Figure  9.  Schematic drawing for a proof-of-principle experiment for demonstrating DC-OPA[18]

    图  10  2.1 µm OPCPA系统示意图。500 W Yb:YAG薄片激光器既是泵浦源又是信号源[19]

    Figure  10.  Schematic diagram of the 2.1 µm OPCPA system. The 500 W Yb:YAG thin disk laser acts as both pump and signal generation source[19]

    图  11  中红外可调谐OPCPA系统装置示意图[20]

    Figure  11.  Layout of the tunable mid-IR OPCPA system[20]

    图  12  (a) 2 μm泵浦的中红外OPCPA光源的示意图。主要部件有种子源、2 μmho:YLF CPA放大器、DFG、SLM和基于ZGP晶体的三个OPA级。Regen. amp.,再生放大器;Booster,功率放大器;CVBG,啁啾体布拉格光栅;SC,超连续谱;HNLF,高非线性光纤;TFP,薄膜偏振片。(b) DFG谱(灰色)、第一级(蓝色)、第二级OPA后的信号谱(绿色);(c)第三个OPA阶段后的闲频光谱测量值(黑色)和计算值(紫色)。TFL,傅里叶变换极限[21]

    Figure  12.  (a) Setup of the mid-IR OPCPA source pumped at 2 μm. The main parts are the seed source, the 2 μm Ho:YLF CPA amplifiers, DFG, the SLM, and the three OPA stages based on ZGP crystals. Regen. amp., regenerative amplifier; Booster, power amplifier; CVBG, chirped volume Bragg grating; SC, supercontinuum; HNLF, highly nonlinear fiber; TFP, thin-film polarizer. (b) DFG spectrum (gray), signal spectrum after the first (blue) and second OPA stage (green); (c) Idler spectrum after the third OPA stage measured (black) and calculated (purple). TFL, Fourier-transform-limited[21]

    图  13  (a) 7 μm OPCPA系统示意图。MIR种子是通过DFG从一个三色光纤前端通过两个宽带飞秒输出产生的。然后,在介质体中将MIR脉冲展宽,并在用啁啾反转级分离的前置放大器和增强放大器中连续放大。通过在前置放大器和增强放大器中调整种子到泵浦脉冲的持续时间来实现OPCPA的最大效率。利用BaF2介质体棒对宽带高能中红外脉冲进行了再压缩。(b)恢复的脉冲包络具有188 fs的半高宽持续时间,(c)测量(填充灰色)和恢复的光谱(红线)和相位(绿线)[22]

    Figure  13.  (a) Layout of the 7 μm OPCPA. The MIR seed is generated using the two broadband femtosecond outputs from a three-color fiber frontend via DFG. Afterward, the MIR pulses are stretched in a dielectric bulk and consecutively amplified in a pre-amplifier and a booster amplifier separated with a chirp inversion stage. Maximum efficiency of the OPCPA is achieved by tailoring the seed-to-pump pulse durations in the pre-amplifier and booster amplifier. The broadband high-energy mid-IR pulses are recompressed using a dielectric bulk rod of BaF2. (b) The retrieved pulse envelope with 188 fs FWHM duration, and (c) measured (filled gray) and retrieved spectrum (red line) and phase (green line)[22]

    图  14  (a) 9 μm OPCPA系统示意图. YAG,钇铝石榴石;ZnSe,硒化锌窗口;HR,高反射镜;TFP,薄膜偏振器;BS,分束器;LGS,LiGaS2晶体;Ge,锗窗口。对于TFP,S偏振的泵浦光的反射率和P偏振的信号光的透射率分别为>99%和91%。(b)SC产生后的信号脉冲光谱(蓝点)、预放大阶段(红色)和主放大阶段(黑色虚线);(c)输出闲频光的测量(黑色)和模拟(红色虚线)光谱[23]

    Figure  14.  (a) The schematic of the 9 μm OPCPA. YAG, Yttrium aluminum garnet; ZnSe, Zinc selenide window; HR, High reflective mirror; TFP, Thin film polarizer; BS, Beam splitter; LGS, LiGaS2 crystal; Ge, Germanium window. For TFP, the reflectance of the S-polarized pump and the transmittance of the P-polarized signal are measured as > 99% and 91% respectively. (b) The spectra of signal pulses after SC generation (blue dotted), the pre-amplification stage (red) and the main-amplification stage (black dashed); (c) The measured (black) and simulated (red dashed) spectra of the output idler pulse[23]

    表  1  2~4 μm OPCPA系统相关参数

    Table  1.   Relevant parameters of 2-4 μm OPCPA system

    Wavelength/μmEnergy/mJRepetition rate/kHzAverage power/WDuration/fsOptical cycleReference
    2.1 1.2 3 3.6 10.5 1.5 [7]
    2.2 0.25 100 25 16.5 2.2 [8]
    3 0.3 10 3 21 2.1 [9]
    3 2.4 10 24 50 5 [10]
    3.1 0.125 100 12.5 73 7 [11]
    3.2 0.152 100 15.2 38 3.6 [12]
    3.25 0.06 160 9.6 14.5 1.35 [13]
    3.9 8 0.02 0.16 83 6.4 [14]
    4 2.6 0.1 0.26 21.5 1.6 [15]
    3.3 31 1 31 66 6 [16]
    2.8 0.52 1 0.52 27 2.89 [17]
    3.2 5.8 1 5.8 20 2 [18]
    2.1 2.7 10 27 30 4.3 [19]
    3.3 13.3 1 13.3 111 10 [20]
    下载: 导出CSV

    表  2  长波中红外OPCPA系统的参数

    Table  2.   Parameters of long wave MIR-OPCPA system

    Wavelength/μmEnergy/mJRepetition rate/kHzAverage power/WDuration/fsOptical cycleReference
    5 0.65 1 0.65 75 4.5 [21]
    7 0.7 0.1 0.07 188 8 [22]
    9 0.014 10 0.14 142 4.7 [23]
    下载: 导出CSV
  • [1] Li J, Ren X, Yin Y, et al. 53-attosecond X-ray pulses reach the carbon K-edge [J]. Nat Commun, 2017, 8(1): 186.
    [2] Colosimo P, Doumy G, Blaga C I, et al. Scaling strong-field interactions towards the classical limit [J]. Nat Phys, 2008, 4(5): 386-389. doi:  10.1038/nphys914
    [3] Hohenleutner M, Langer F, Schubert O, et al. Real-time observation of interfering crystal electrons in high-harmonic generation [J]. Nature, 2015, 523(7562): 572-575. doi:  10.1038/nature14652
    [4] Kara O, Maidment L, Gardiner T, et al. Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators [J]. Opt Express, 2017, 25(26): 32713-32721. doi:  10.1364/OE.25.032713
    [5] Keilmann F, Gohle C, Holzwarth R, et al. Time-domain mid-infrared frequency-comb spectrometer [J]. Opt Lett, 2004, 29(13): 1542-1544. doi:  10.1364/OL.29.001542
    [6] Haas J, Mizaikoff B. Advances in mid-infrared spectroscopy for chemical analysis [J]. Annu Rev Anal Chem, 2016, 9: 45-68. doi:  10.1146/annurev-anchem-071015-041507
    [7] Deng Y P, Schwarz A, Fattahi H, et al. Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laser pulses at 2.1 μm [J]. Opt Lett, 2012, 37(23): 4973-4975. doi:  10.1364/OL.37.004973
    [8] Pupeikis J, Chevreuil P-A, Bigler N, et al. Water window soft x-ray source enabled by a 25 W few-cycle 2.2 μm OPCPA at 100 kHz [J]. Optica, 2020, 7(2): 168-171. doi:  10.1364/OPTICA.379846
    [9] Zou X, Li W K, Liang H K, et al. 300 μJ, 3 W, few-cycle, 3 μm OPCPA based on periodically poled stoichiometric lithium tantalate crystals [J]. Opt Lett, 2019, 44(11): 2791-2794.
    [10] Zou X, Li W, Qu S, et al. Flat-top pumped multi-millijoule mid-infrared parametric chirped-pulse amplifier at 10 kHz repetition rate [J]. Laser Photonics Rev, 2021, 15(6): 2000292. doi:  10.1002/lpor.202000292
    [11] Mark M, Zsuzsanna H, Valentin P, et al. 43 W, 1.55 μm and 12.5 W, 3.1 μm dual-beam, sub-10 cycle, 100 kHz optical parametric chirped pulse amplifier [J]. Opt Lett, 2018, 43(21): 5246-5249. doi:  10.1364/OL.43.005246
    [12] Thiré N, Maksimenka R, Kiss B, et al. Highly stable, 15 W, few-cycle, 65 mrad CEPnoise mid-IR OPCPA for statistical physics [J]. Opt Express, 2018, 26(21): 26907-26915. doi:  10.1364/OE.26.026907
    [13] Elu U, Baudisch M, Pires H, et al. High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier [J]. Optica, 2017, 4(9): 1024-1029. doi:  10.1364/OPTICA.4.001024
    [14] Andriukaitis G, Balčiūnas T, Ališauskas S, et al. 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier [J]. Opt Lett, 2011, 36(15): 2755-2757. doi:  10.1364/OL.36.002755
    [15] Wang P, Li Y, Li W, et al. 2.6 mJ/100 Hz CEP-stable near-single-cycle 4 μm laser based on OPCPA and hollow-core fiber compression [J]. Opt Lett, 2018, 43(9): 2197-2200. doi:  10.1364/OL.43.002197
    [16] Fu Y, Xue B, Midorikawa K, et al. TW-scale mid-infrared pulses near 3.3 μmdirectly generated by dual-chirped optical parametric amplification [J]. Appl Phys Lett, 2018, 112: 241105. doi:  10.1063/1.5038414
    [17] He H, Wang Z, Hu C, et al. 520-μJ mid-infrared femtosecond laser at 2.8 μm by 1-kHz KTA optical parametric amplifier [J]. Appl Phys B, 2018, 124: 31. doi:  10.1007/S00340-018-6896-Y
    [18] Yin Y, Li J, Ren X, et al. High-energy two-cycle pulses at 3.2 μm by abroadband-pumped dual-chirped optical parametric amplification [J]. Opt Express, 2016, 24(22): 24989-24998. doi:  10.1364/OE.24.024989
    [19] Feng T, Heilmann A, Bock M, et al. 27 W 2.1 μm OPCPA system for coherent soft X-ray generation operating at 10 kHz [J]. Opt Express, 2020, 28(6): 8724-8733. doi:  10.1364/OE.386588
    [20] Zhao K, Zhong H, Yuan P, et al. Generation of 120 GW mid-infrared pulses from a widely tunable noncollinear optical parametric amplifier [J]. Opt Lett, 2013, 38(13): 2159-2161. doi:  10.1364/OL.38.002159
    [21] Grafenstein L, Bock M, Ueberschaer D, et al. 5 μm few-cycle pulses with multi-gigawatt peak power at a 1 kHz repetition rate [J]. Opt Lett, 2017, 42(19): 3796-3799. doi:  10.1364/OL.42.003796
    [22] Elu U, Steinle T, Sanchez D, et al. Table-top high-energy 7 μm OPCPA and 260 mJ Ho: YLF pump laser [J]. Opt Lett, 2019, 44(13): 3194-3197. doi:  10.1364/OL.44.003194
    [23] Qu S, Liang H K, Liu K, et al. 9 μm few-cycle optical parametric chirped-pulse amplifier based on LiGaS2 [J]. Opt Lett, 2019, 44(10): 2422-2425. doi:  10.1364/OL.44.002422
    [24] Namboodiri M, Luo C, Indorf G, et al. Optical properties of Li-based nonlinear crystalsfor high power mid-IR OPCPA pumped at 1 μm under realistic operational conditions [J]. Opt Mater Express, 2021, 11(2): 231-239. doi:  10.1364/OME.414478
    [25] Hrisafov S, Pupeikis J, Chevreuil P A, et al. High-power few-cycle near-infrared OPCPA for soft X-ray generation at 100 kHz [J]. Opt Express, 2020, 28(26): 40145-40154. doi:  10.1364/OE.412564
    [26] Lam R K, Raj S L, Pascal T A, et al. Soft X-ray second harmonic generation as an interfacial probe [J]. Phys Rev Lett, 2018, 120(2): 023901. doi:  10.1103/PhysRevLett.120.023901
    [27] Johnson A S, Avni T, Larsen E W, et al. Attosecond soft X-ray highharmonic generation [J]. Philos Trans A Math Phys Eng Sci, 2019, 377(2145): 20170468. doi:  10.1098/rsta.2017.0468
    [28] Xu X, Zhang Y, Zhang H, et al. Production of 100-TW single attosecond x-ray pulse [J]. Optica, 2020, 7(4): 355-358. doi:  10.1364/OPTICA.385147
    [29] Nourbakhsh Z, Tancogne-Dejean N, Merdji H, et al. High harmonics and isolated attosecond pulses from MgO [J]. Phys Rev Applied, 2021, 15(1): 014013. doi:  10.1103/PhysRevApplied.15.014013
    [30] Xu J, Shen B, Zhang X, et al. Terawatt-scale optical half-cycle attosecond pulses [J]. Sci Rep, 2018, 8(1): 2669. doi:  10.1038/s41598-018-21052-2
    [31] Iwakuni K, Okubo S, Tadanaga O, et al. Generation of a frequency comb spanning morethan 3.6 octaves from ultraviolet to mid infrared [J]. Opt Lett, 2016, 41(17): 3980-3983. doi:  10.1364/OL.41.003980
    [32] Timmers H, Kowligy A, Lind A, et al. Molecular fingerprinting with bright, broadband infrared frequency combs [J]. Optica, 2018, 5(6): 727-732. doi:  10.1364/OPTICA.5.000727
    [33] Nagy Z, Takacs A, Filkorn T, et al. Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery [J]. Journal of Refractive Surgery, 2009, 25(12): 1053-1060. doi:  10.3928/1081597X-20091117-04
    [34] Shah R, Shah S. Effect of scanning patterns on the results of femtosecond laser lenticule extraction refractive surgery [J]. Journal of Cataract & Refractive Surgery, 2011, 37(9): 1636-1647. doi:  10.1016/j.jcrs.2011.03.056
    [35] Sekundo W, Kunert K, Russmann C, et al. First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: six-month results [J]. Journal of Cataract & Refractive Surgery, 2008, 34(9): 1513-1520. doi:  10.1016/j.jcrs.2008.05.033
    [36] Blum M, Kunert K, Schröder M, et al. Femtosecond lenticule extraction for the correction of myopia: preliminary 6-month results [J]. Graefe's Archive for Clinical and Experimental Ophthalmology, 2010, 248(7): 1019-1027. doi:  10.1007/s00417-009-1293-1
  • [1] 张逸文, 蔡宇, 苑莉薪, 胡明列.  基于循环神经网络的超短脉冲光纤放大器模型(特邀) . 红外与激光工程, 2022, 51(1): 20210857-1-20210857-7. doi: 10.3788/IRLA20210857
    [2] 战泽宇, 陈吉祥, 刘萌, 罗爱平, 徐文成, 罗智超.  1.7 μm超快光纤激光器研究进展(特邀) . 红外与激光工程, 2022, 51(1): 20210850-1-20210850-15. doi: 10.3788/IRLA20210850
    [3] 徐岩, 彭志刚, 石宇航, 王贝贝, 程昭晨, 王璞.  百瓦级1 030 nm光纤-固体混合放大激光器 . 红外与激光工程, 2022, 51(6): 20210442-1-20210442-9. doi: 10.3788/IRLA20210442
    [4] 高玉欣, 陈吉祥, 张泽贤, 战泽宇, 罗智超.  1.7 μm全光纤锁模脉冲掺铥光纤激光器研究 . 红外与激光工程, 2022, 51(7): 20220234-1-20220234-6. doi: 10.3788/IRLA20220234
    [5] 高德辛, 吕昶见, 吕东明, 于旺, 秦伟平.  面向超短脉冲激光器泵浦源的驱动系统设计及应用 . 红外与激光工程, 2022, 51(4): 20210153-1-20210153-10. doi: 10.3788/IRLA20210153
    [6] 令维军, 王文婷.  2 μm超短脉冲全固态掺铥振荡器研究进展(特邀) . 红外与激光工程, 2021, 50(8): 20210346-1-20210346-11. doi: 10.3788/IRLA20210346
    [7] 姚猛, 叶继飞, 李兰, 高贺岩.  皮秒激光辐照硅基PIN光电二极管的瞬态响应信号分析 . 红外与激光工程, 2021, 50(S2): 20210305-1-20210305-6. doi: 10.3788/IRLA20210305
    [8] 刘沛, 衡家兴, 张兆伟.  啁啾脉冲光学参量振荡器及宽谱中红外激光的产生(特邀) . 红外与激光工程, 2020, 49(12): 20201051-1-20201051-12. doi: 10.3788/IRLA20201051
    [9] 汪莎, 张志成, 邓国亮, 周寿桓.  直接输出的超短脉冲轨道角动量涡旋光产生技术研究进展(特邀) . 红外与激光工程, 2020, 49(12): 20201061-1-20201061-11. doi: 10.3788/IRLA20201061
    [10] 赵万芹, 梅雪松, 王文君.  超短脉冲激光微孔加工(下)——实验探索 . 红外与激光工程, 2019, 48(2): 242001-0242001(12). doi: 10.3788/IRLA201948.0242001
    [11] 赵万芹, 梅雪松, 王文君.  超短脉冲激光微孔加工(上)——理论研究 . 红外与激光工程, 2019, 48(1): 106008-0106008(9). doi: 10.3788/IRLA201948.0106008
    [12] 杨康文, 郝强, 曾和平.  超短脉冲偏振分割放大技术研究进展(特邀) . 红外与激光工程, 2018, 47(1): 103004-0103004(9). doi: 10.3788/IRLA201847.0103004
    [13] 曹劭文, 张蓉竹, 孙年春.  超短啁啾高斯脉冲叠加光束的空间异常特性分析 . 红外与激光工程, 2018, 47(10): 1006002-1006002(6). doi: 10.3788/IRLA201847.1006002
    [14] 粟荣涛, 周朴, 张鹏飞, 王小林, 马阎星, 马鹏飞.  超短脉冲光纤激光相干合成(特邀) . 红外与激光工程, 2018, 47(1): 103001-0103001(19). doi: 10.3788/IRLA201847.0103001
    [15] 何广龙, 徐莉, 金亮, 马晓辉, 吴国盛, 隋庆学, 张志敏.  双SESAM被动锁模超短脉冲光纤激光器 . 红外与激光工程, 2018, 47(5): 505002-0505002(6). doi: 10.3788/IRLA201847.0505002
    [16] 金星, 常浩, 叶继飞.  超短脉冲激光烧蚀冲量耦合测量方法 . 红外与激光工程, 2017, 46(3): 329002-0329002(7). doi: 10.3788/IRLA201746.0329002
    [17] 王少奇, 邓颖, 李超, 王方, 张永亮, 康民强, 薛海涛, 罗韵, 粟敬钦, 胡东霞, 郑奎兴, 朱启华.  被动锁模掺Er3+氟化物光纤激光器理论研究 . 红外与激光工程, 2016, 45(11): 1136004-1136004(6). doi: 10.3788/IRLA201645.1136004
    [18] 田秀芹, 肖思, 陶少华, 袁战忠, 周炎强.  飞秒超短脉冲激光对硅太阳能电池的损伤阈值研究 . 红外与激光工程, 2014, 43(3): 676-680.
    [19] 于峰, 孙畅, 高静, 匡鸿深, 张晶, 高鹏坤, 葛廷武, 王智勇.  全光纤结构超短脉冲超连续谱的产生及其特性研究 . 红外与激光工程, 2014, 43(11): 3555-3558.
    [20] 邱冬冬, 王睿, 程湘爱, 张震, 江天.  超短脉冲激光对单晶硅太阳能电池的损伤效应 . 红外与激光工程, 2012, 41(1): 112-115.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  447
  • HTML全文浏览量:  190
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-11
  • 修回日期:  2021-07-21
  • 刊出日期:  2021-08-25

中红外大能量高功率周期量级光学参量啁啾脉冲放大的发展及应用(特邀)

doi: 10.3788/IRLA20210396
    作者简介:

    何林珍,女,硕士生,主要从事中红外超快激光方面的研究

    通讯作者: 梁厚昆,男,教授,博士,主要从事超快激光、中红外激光、非线性光学与随机激光等方面的研究。
  • 中图分类号: TN24

摘要: 近十年来,超强超短脉冲是激光光学发展的一个重要趋势。尤其是在中红外(MIR)波段,由于中红外波长具有更大的有质动力并且其光谱范围几乎包含了所有分子“指纹”共振峰,这使得中红外激光的研究在强场物理、中红外光谱学、材料加工以及生物医学研究等领域中至关重要。目前已经有许多比较成熟的激光技术可以对脉冲进行整形、放大,例如差频(DFG)、啁啾脉冲放大(CPA)、光学参量放大技术(OPA)以及光学参量啁啾脉冲放大(OPCPA)等。利用OPCPA技术具有的高放大增益、高信噪比、宽增益带宽的优点在高非线性系数的非线性晶体中进行脉冲放大已经成为当前获取超强超短中红外脉冲的主要手段之一。文中总结了利用OPCPA技术在2~20 μm波长范围内产生和放大MIR少周期脉冲的研究进展,并对其在强场物理、分子频谱探测以及生物医学方面的应用进行了简要的阐述。

English Abstract

    • 近些年随着研究人员对非线性光学进一步的研究与掌握,激光在波长的扩展、能量的提升、脉冲宽度的压缩等方面突飞猛进。其中强场物理学[1-3]和高级超快分子光谱学[4-6]所提供的应用和前景一直是发展超强超短中红外脉冲源的关键动力。在强场物理中,电子在强场激光作用下快速周期性的振荡产生转换效率极高的高次谐波,由于原子的势能与激光场强和波长的二次方的乘积成正相关,中红外脉冲源对产生这种高次谐波拥有先天优势。特别是长波中红外脉冲,它可以很好地减少材料的伤害阈值、多光子吸收给强场物理的深入研究带来的阻碍。这给非相干飞秒硬X射线的产生以及原子和固体中的高次谐波的产生提供了适当的源,使在水窗口中产生相干X射线辐射成为可能。在分子光谱学中,由于绝大多数有机物和无机物的基频吸收峰都出现在中红外区,当分子结构稍有不同时,对应的光谱就会出现细微差异,这就像人体的指纹一样,所以又被称为分子“指纹区”(7~16 μm)。采用相关技术产生少周期激光源,可以将具有高场分辨率的红外光谱应用到环境监测、疾病呼吸探测等领域。因此,获得超强超短中红外脉冲一直是国内外关注研究的热点。

      对于MIR固体激光器,产生MIR脉冲的技术主要有两种,即直接发射掺杂离子和光参量下转换。前者基于增益介质储能后受激的过程,输出波长取决于增益介质的能级结构。这一过程的最大挑战是在MIR波长上的弛豫能与声子振动能相吻合,这降低了增益,阻碍了MIR波长上的激光过程。第二种技术是基于参量频率变换,主要由非线性晶体提供相位匹配条件。在这个过程中,不存在热积累,通过宽带相位匹配可以实现宽带激光放大,从而支持产生少周期的MIR脉冲。目前,参量下转换已经成为拓展新的激光光谱、产生近红外、MIR和THz波段脉冲的一种不可缺少的手段。

      而参量下转换技术之一——OPCPA技术就是针对获得超强超短中红外脉冲而提出的。通过CPA技术已经使超短超强脉冲激光的发展产生了较大的飞跃,但是由于其放大增益与光谱带宽的相互限制,很难将脉冲能量放大到极高,脉冲宽度压缩到极短,并且同样被放大的预脉冲严重地影响了主脉冲与物质间的相互作用。这种局限性在OPA技术的提出后得到了明显的缓解,将OPA技术与CPA技术相结合起来的OPCPA技术可以获取宽增益带宽、高信噪比、高放大增益的超短脉冲,这促进了人们在飞秒、阿秒时间尺度上的电子动力学控制、超快电子衍射成像等相关方面的研究。OPCPA技术的基本思想是:先将宽带宽的种子脉冲在时域上展宽成啁啾脉冲,使其与同样宽度的泵浦光在时域上匹配,然后在非线性晶体中进行参量放大,最后利用压缩器压缩成超短脉冲,从而获得了峰值功率很高的脉冲激光。文中主要综述了近几年来基于OPCPA技术对波长范围在2~20 μm脉冲的生成和放大以及在强场物理、分子频谱探测和生物组织微创切割方面的展望。

    • 目前,许多研究小组通过OPCPA技术实现了中心波长位于2~4 μm,脉冲能量高达毫焦量级的高能量、少周期激光源。表1总结了部分2~4 μm少周期OPCPA系统的主要相关参数并且选择了其中一些典型的工作进行详细的阐述。

      表 1  2~4 μm OPCPA系统相关参数

      Table 1.  Relevant parameters of 2-4 μm OPCPA system

      Wavelength/μmEnergy/mJRepetition rate/kHzAverage power/WDuration/fsOptical cycleReference
      2.1 1.2 3 3.6 10.5 1.5 [7]
      2.2 0.25 100 25 16.5 2.2 [8]
      3 0.3 10 3 21 2.1 [9]
      3 2.4 10 24 50 5 [10]
      3.1 0.125 100 12.5 73 7 [11]
      3.2 0.152 100 15.2 38 3.6 [12]
      3.25 0.06 160 9.6 14.5 1.35 [13]
      3.9 8 0.02 0.16 83 6.4 [14]
      4 2.6 0.1 0.26 21.5 1.6 [15]
      3.3 31 1 31 66 6 [16]
      2.8 0.52 1 0.52 27 2.89 [17]
      3.2 5.8 1 5.8 20 2 [18]
      2.1 2.7 10 27 30 4.3 [19]
      3.3 13.3 1 13.3 111 10 [20]

      在早期工作中,F.Krausz的研究小组同时使用宽带的钛宝石激光(振荡器和放大器)作为信号和泵浦光[7]。如图1所示,将从钛宝石振荡器输出的宽带光谱中提取的1030 nm光谱成分入射到Yb:YAG薄片放大器中,从而获得与信号光束同步的泵浦光。采用啁啾周期极化铌酸锂晶体(PPLN),通过对钛宝石放大器的光谱展宽脉冲进行差频混频,产生放大阶段所需的超宽光谱种子。然后,分别在两块PPLN晶体和一块LiNbO3晶体中利用非共线光学参量放大技术(NOPAs)进行放大。最后,产生了重复频率为3 kHz,中心波长为2.1 μm的中红外输出,其脉冲能量为1.2 mJ,脉冲宽度为10.5 fs (1.5周期)。

      图  1  (a) 2.1 μm少周期OPCPA系统的示意图;(b)测量(蓝色)和恢复(红色)的光谱强度和相位(黑色虚线),以及(c)测量的时间强度和相位。插图:第三阶段后测量的空间强度剖面[7]

      Figure 1.  (a) Schematic of 2.1 μm few-cycle OPCPA system; (b) Measured (blue) and retrieved (red) spectral intensity and phase (dashed black), and (c) measured temporal intensity and phase. Inset: measured spatial intensity profile after the third stage[7]

      2020年,U. Keller的研究小组提出了一个中心波长为2.2 μm的OPCPA系统,在100 kHz的重复频率下,产生了脉宽为16.5 fs (2.2周期)的脉冲,平均功率25 W[8]。如图2所示,利用BBO晶体将钛宝石振荡器输出的种子光进行参量放大。随后,在另一个BBO晶体中通过DFG机制产生闲频光。基于PPLN晶体的连续三级NOPA系统将闲频光放大到300 μJ。最后,通过压缩器将脉冲压缩到16.5 fs,此时脉冲能量为250 μJ。同时利用该中红外OPCPA系统,演示了光谱延伸至0.6 keV的软X射线发射。

      图  2  (a) 2.2 μm OPCPA系统的示意图。右上角的插图显示了系统的长期输出稳定性和圆柱形整形望远镜后的光束轮廓。(b)恢复的放大器输出脉冲形状。(c)蓝线,测量的光谱;蓝虚线,恢复的光谱;橙线,恢复的相位[8]

      Figure 2.  (a) 2.2 μm OPCPA layout. The inset on the top right shows the long-term output stability of the system and beam profile after cylindrical reshaping telescopes. (b) The retrieved pulse shape of the amplifier output. (c) Blue line, measured spectrum; blue-dashed line, retrieved spectrum; orange line, retrieved phase[8]

      3~4 µm波段最经典的MIR-OPCPA可能来自A.Baltuska领导的研究团队。他们获得了中心波长为3.9 μm,脉冲能量为8~20 mJ,脉冲宽度为~90 fs,重复频率为20 Hz的MIR激光输出[14]。如图3所示,采用Yb:KGW克尔透镜锁模振荡器作为种子源。然后,利用KTP晶体连续三级参量放大,获得了能量为65 μJ、中心波长为1460 nm的信号光。另一方面,提取振荡器输出光谱的1064 nm分量通过Nd:YAG CPA系统放大到250 mJ的脉冲能量,作为后续OPCPA系统的泵浦源。然后构造了两级OPCPA,获得了波长在1.46 μm的信号光和3.9 μm的闲频光,其能量分别为22 mJ和13 mJ。通过压缩闲频光,获得了8 mJ,80 fs的输出脉冲。在随后的工作中,系统的能量进一步放大到了~20 mJ。

      图  3  (a) 3.9 μm OPCPA 系统的示意图;(b)分别测得最后一级OPCPA后的信号光和闲频光的光谱。绿色虚线是KTA晶体的透射光谱[14]

      Figure 3.  (a) Layout of the 3.9 μm OPCPA system; (b) Spectra of the signal and idler pulses after the last OPCPA stage measured, respectively. The dotted green curve is the transmission spectrum of the KTA crystal[14]

      在3~4 μm波段中,J.Biegert的团队展示了一种高平均功率的MIR-OPCPA系统,获得了在3.25 μm的中心波长处输出功率为21 W,重复频率为160 kHz的中红外脉冲[13]。如图4所示,波长为3.25 μm的MIR种子是由双色光纤前端与DFG级结合产生的。然后,将MIR脉冲展宽后,在前置放大器和两个增强放大器中连续放大。采用Nd:YVO4基主振荡功率放大器(MOPA)作为泵浦源,提供了波长为1064 nm,重复频率160 kHz下1.1 mJ,9 ps的脉冲。经过三个前置放大器和四个增强放大器的放大,得到了平均功率21 W、能量为131 μJ的MIR脉冲。在惰性气体填充的反共振光子晶体光纤中,通过孤子自压缩将MIR激光输出压缩到1.35个周期,产生在3.3 μm处脉宽为14.5 fs的脉冲,其平均功率为9.6 W。

      图  4  (a)高能量MIR OPCPA系统装置图。种子由双色光纤前端和DFG级组合产生。然后,拉伸后在前置放大器和两个增强放大器中对MIR脉冲进行连续放大。最大的转换效率是通过多次使用泵浦光和单独定制的种子到泵浦光脉冲持续时间来实现的。MIR输出脉冲在一个大容量拉伸器中被压缩。(b)使用Ar填充的ARR-PCF将脉冲最终压缩到单个光学周期。MIR-OPCPA系统的输出特性。MIR输出脉冲的SHG-FROG恢复。(c)光谱的振幅和相位以及(d)时间振幅和瞬时频率。(e)在30 min内测量的脉冲间功率稳定性。插图显示输出光束轮廓[13]

      Figure 4.  (a) Setup of the high-power, MIR OPCPA system. The seed is generated by a two-color fiber front-end in combination with a DFG stage. Afterward, the MIR pulses are stretched and consecutively amplified in a preamplifier and two booster amplifiers. Maximum conversion efficiencies are achieved by multiple use of the pump beam and by individually tailored seed-to-pump pulse durations. The MIR output is compressed in a bulk stretcher and (b) the final compression to a single optical cycle is performed using an Ar-filled ARR-PCF. Output characteristics of the MIR OPCPA system. SHG-FROG retrieval of the MIR output pulses, showing (c) the spectral amplitude and phase, and (d) the temporal amplitude and instantaneous frequency. (e) The pulse-to-pulse power stability measured over 30 min. The inset shows the output beam profile[13]

      Y.Leng的研究小组报道了一种产生4 μm脉冲的OPCPA系统,该脉冲具有2.6 mJ的脉冲能量和1.6个周期的脉冲宽度[15]。如图5所示,由商用钛宝石飞秒激光器泵浦的自制OPA产生CEP稳定的波长在4 μm的种子,其能量约为120 μJ。用于MIR-OPCPA的泵浦激光来自皮秒Nd:YAG激光器,该激光器可以以100 Hz的重复频率输出能量高达300 mJ、脉宽为50 ps的1064 nm脉冲。经过两级放大后,利用光栅压缩器将放大后的4 μm啁啾脉冲压缩到105 fs,能量为11.8 mJ。为了获得4 μm的近单周期的脉冲,采用了一种内径为1 mm、长度为3 m的惰性气体填充中空纤维对中红外脉冲进行压缩。结合CaF2材料,进一步将脉冲能量为2.6 mJ的MIR脉冲压缩到21.5 fs,对应于4 μm中心波长的1.6个光学周期。

      图  5  (a) 4 μm OPCPA 系统以及其后压缩系统简图;(b)脉宽为21.5 fs的半高宽脉冲时间剖面图和(c)重建频谱[15]

      Figure 5.  (a) Schematic of the 4 μm OPCPA and postcompression system; (b) Pulse temporal profile of 21.5 fs FWHM duration and (c) reconstructed spectrum[15]

      2021年,H.K.Liang的团队展示了一种由平顶光束泵浦的高能高功率3 µm OPCPA系统[10]。利用商用衍射相位板和聚焦透镜的组合,将1 µm高斯泵浦转换成平顶轮廓,光束整形率大于95%,如图6(a)所示。采用平顶光束作为MIR-OPCPA系统的泵浦光,其转换效率高达13.5%,效率提高2倍。如图6(b)~(d)所示,产生2.7 mJ、27 W、125 fs、3 µm脉冲,其重复频率为10 kHz。放大后的平顶状MIR脉冲在薄YAG晶体中进行非线性压缩,压缩到50 fs,对应5个光学周期,压缩效率约为90%。在OPCPA上安装衍射相位板作为光束整形器是一种简单、可靠、经济的方法。它原则上也可以应用于其他波长范围的其他参量转换。

      图  6  (a)高能高平均功率3 µm OPCPA平顶光束整形示意图。通过周期性极化铌酸锂(PPLN)和KTA晶体,从三级OPCPA前置放大器产生中心在3 μm的MIR脉冲并放大到300 μJ。第四级OPCPA通过平顶光束整形来提高MIR输出,提高参量效率。第四级OPCPA的高斯泵浦光束入射到由相位板和聚焦透镜组成的平顶光束整形器,在透镜的成像平面上形成平顶泵浦光束。利用平顶泵浦来放大前3级OPCPA系统产生的高斯闲频光束,使得产生3 µm的高能高平均功率平顶输出。在KTA晶体上测量了带平顶光束整形器和不带平顶光束整形器的泵浦光剖面(b)和(c)。(d)测量了利用平顶(红色)和高斯(黑色)光束剖面泵浦OPCPA系统产生3 μm闲频光脉冲能量。利用平顶光束和高斯光束进行泵浦获得了2.7 mJ和1.45 mJ的MIR脉冲能量,相当于第4级OPCPA系统的的泵浦-闲频效率分别为7%和13.5%[10]

      Figure 6.  (a) Schematic of flat-top beam shaping of the high-energy and high-average-power 3 µm OPCPA. The MIR pulses centered at 3 µm are generated and amplified to 300 µJ from 3-stage OPCPA preamplifiers via periodically poled lithium niobate (PPLN) and KTA crystals. The 4th OPCPA stage is designed to boost up the MIR output and enhance the parametric efficiency through the flat-top beam shaping. The Gaussian pump beam of the 4th-stage OPCPA is sent to a flat-top beam shaper consisting of a phase plate and a focus lens, and the flat-top pump beam is formed at the imaging plane of the lens. The Gaussian idler beam generated from the first-3 OPCPA stages is amplified with a flat-top pump, producing a high-energy and high-average-power flat-top-like 3 µm output. The measured pump beam profiles (b) with and (c) without the flat-top beam shaper, on the KTA crystal. The cross section beam profiles on the x and y axes are included too. (d) The pulse energy measurements of the 3 µm idler pulse from the OPCPA with flat-top (red) and Gaussian (black) pump beam profiles. 2.7 mJ and 1.45 mJ MIR pulse energy are obtained from the flat-top and Gaussian pump, corresponding to 7% and 13.5% pump-to-idler efficiency for the 4th-OPCPA stage, respectively[10]

      2018年,Yuxi Fu的研究小组利用双啁啾光学参量放大(DC-OPA)技术通过中心波长为0.8 μm的宽带钛宝石激光器系统产生了能量31 mJ,波长接近3.3 μm的中红外脉冲[16]。如图7所示,将钛宝石放大器产生重频为10 Hz的激光在压缩之前分成两束,其中能量为1.4 mJ、脉宽为150 ps的这部分激光依次通过多通放大器和压缩器,产生700 mJ的脉冲作为后续两级DC-OPA系统的泵浦。将另一部分激光压缩至25 fs后通过OPA和DFG机制产生中心波长接近3.3 μm 的中红外脉冲。然后使用声光可编程分散式滤波器(AOPDF)和Si将其展宽至5 ps后,通过基于MgO:LiNbO3晶体两级NOPA系统放大至31 mJ。最后利用CaF2压缩至70 fs。

      图  7  基于MgO:LiNbO3晶体的中红外DC-OPA系统装置图[16]

      Figure 7.  Experimental setup of a MIR DC-OPA laser system with MgO:LiNbO3 crystals[16]

      Huijun He的研究团队报道了一种由钛宝石激光系统泵浦产生520 μJ、1 kHz的中红外飞秒OPCPA系统,其中心波长大约在2.8 μm[17]。如图8所示,将大约2 mJ的泵浦能量聚焦到3 mm的YAG上产生白光作为信号光。部分泵浦通过BBO晶体发生倍频后在另一块BBO内利用OPA技术将特定的部分白光 (1115 nm)放大至1.3 μJ。接下来,采用非共线结构,利用KTA晶体连续三次参量放大实现宽带输出。最后获得了31.8 mJ的信号光和520 μJ的闲频光。为了最大限度的提高闲频光的带宽,他们还提出了一种给出最优非共线角和估计转换效率以及输出谱的理论方法。

      图  8  2.8 μm激光系统的装置示意图[17]

      Figure 8.  Schematic layout of the 2.8 µm laser system[17]

      2016年,Yanchun Yin的研究小组提出了利用宽带泵浦的DC-OPA系统产生中心波长位于3.2 μm的高能量、双周期中红外脉冲的方案[18]。如图9所示,nJ量级的振荡器输出脉冲经CPA系统放大到30 mJ后分成两部分。将第一部分(28 mJ)压缩至1.79 ps,作为三级DC-OPA系统的泵浦。将剩余的2 mJ部分压缩至20 fs后,通过充满N2的空芯光纤(HCF)产生白光。然后利用啁啾镜将白光压缩至<7 fs后入射到KTA晶体中,利用DFG产生宽带中红外种子光(2.3~4.5 μm)。使用AOPDF将种子光展宽至1 ps 后入射到基于MgO:LiNbO3晶体的三级DC-OPA系统。最后经过压缩可以获得波长为3.2 μm、能量为5.8 mJ的双周期脉冲,其转换效率为17%。

      图  9  DC-OPA演示原理性实验示意图[18]

      Figure 9.  Schematic drawing for a proof-of-principle experiment for demonstrating DC-OPA[18]

      Tianli Feng的团队首次演示了平均功率高达27 W,重复频率为10 kHz的2.1 μm的OPCPA系统,其中泵浦和信号来自同一个500 W的Yb:YAG的薄片激光器[19]。如图10所示,利用0.5 mJ的泵浦脉冲通过两个级联的非线性过程(SHG和DFG)产生信号脉冲。然后采用两级基于PPLN晶体的OPA机制放大信号,在两级OPA之间,使用AOPDF来控制色散,将信号压缩至19 fs。泵浦功率最大部分用于后续的两级OPA系统(分别基于BiBO晶体和BBO晶体),将信号放大至2.9 mJ。最后使用一个4 cm长的无涂层玻璃块进行脉冲压缩,获得了脉宽30 fs的高功率2 μm脉冲。

      图  10  2.1 µm OPCPA系统示意图。500 W Yb:YAG薄片激光器既是泵浦源又是信号源[19]

      Figure 10.  Schematic diagram of the 2.1 µm OPCPA system. The 500 W Yb:YAG thin disk laser acts as both pump and signal generation source[19]

      2013年,Kun Zhao的研究团队展示了一种非共线光参量变换可调谐脉冲放大系统,产生了波长在3.3~3.95 μm 内可调谐的高峰值功率中红外脉冲[20]。如图11所示,该系统采用了两个放大系统作为泵浦源,分别是飞秒钛宝石激光再生放大器和Nd:YVO4激光再生放大系统。通过二向色镜将钛宝石激光器产生的激光和20%的Nd:YVO4激光输出结合入射到2块12 mm的LiNbO3晶体,通过OPA技术产生了波长在3.3~3.95 μm范围内可调谐的闲频光,作为后续OPCPA系统的信号光。然后将其展宽至430 ps后通过基于LiNbO3晶体的非共线单级OPCPA系统放大至29.5 mJ。最后,经过压缩获得了能量为13.3 mJ,脉宽111 fs的宽调谐中红外脉冲。值得一提的是,基于~1 µm泵浦的 ~3 µm 参量转换远离简并波长,且相较长波长中红外色散变化较陡峭,因此相位匹配带宽受限,一般难以直接实现周期量级的脉冲放大,需辅助后续的非线性压缩。

      图  11  中红外可调谐OPCPA系统装置示意图[20]

      Figure 11.  Layout of the tunable mid-IR OPCPA system[20]

    • 近年来,出现了许多激光波长超过5 μm的长波MIR-OPCPA系统的报道。表2总结了中心波长为5 μm、7 μm和9 μm的长波MIR-OPCPA系统。

      表 2  长波中红外OPCPA系统的参数

      Table 2.  Parameters of long wave MIR-OPCPA system

      Wavelength/μmEnergy/mJRepetition rate/kHzAverage power/WDuration/fsOptical cycleReference
      5 0.65 1 0.65 75 4.5 [21]
      7 0.7 0.1 0.07 188 8 [22]
      9 0.014 10 0.14 142 4.7 [23]

      2017年,报告了一个5 μm OPCPA系统,该系统以1 kHz的重复率提供了数千兆瓦的飞秒脉冲[21]。如图12所示,掺铒飞秒激光器用作系统的种子源。将1.5 μm种子的一部分注入非线性光纤,以提供1 μm光谱分量。然后通过DFG产生3.4 μm MIR种子,作为OPCPA系统的信号光。1.5 μm种子的另一部分也被注入非线性光纤中以产生2 μm光谱成分,该光谱成分通过CPA系统被放大后用作后续OPCPA系统的泵浦光。于是,通过在ZGP晶体中的三级OPA系统,获得了脉冲能量为0.65 mJ、脉宽为75 fs(亚五周期)的5 μm的MIR闲频光输出。

      图  12  (a) 2 μm泵浦的中红外OPCPA光源的示意图。主要部件有种子源、2 μmho:YLF CPA放大器、DFG、SLM和基于ZGP晶体的三个OPA级。Regen. amp.,再生放大器;Booster,功率放大器;CVBG,啁啾体布拉格光栅;SC,超连续谱;HNLF,高非线性光纤;TFP,薄膜偏振片。(b) DFG谱(灰色)、第一级(蓝色)、第二级OPA后的信号谱(绿色);(c)第三个OPA阶段后的闲频光谱测量值(黑色)和计算值(紫色)。TFL,傅里叶变换极限[21]

      Figure 12.  (a) Setup of the mid-IR OPCPA source pumped at 2 μm. The main parts are the seed source, the 2 μm Ho:YLF CPA amplifiers, DFG, the SLM, and the three OPA stages based on ZGP crystals. Regen. amp., regenerative amplifier; Booster, power amplifier; CVBG, chirped volume Bragg grating; SC, supercontinuum; HNLF, highly nonlinear fiber; TFP, thin-film polarizer. (b) DFG spectrum (gray), signal spectrum after the first (blue) and second OPA stage (green); (c) Idler spectrum after the third OPA stage measured (black) and calculated (purple). TFL, Fourier-transform-limited[21]

      2016年,J.Biegert的团队展示了一种高能量、少周期的7 μm OPCPA系统[22]。如图13所示,系统从Er:Tm:Ho:fiber激光器开始,该激光器通过CSP晶体中的DFG产生7 µm种子。然后在由低温冷却Ho:YLF-CPA系统泵浦的基于ZGP的OPCPA链中放大7 μm种子脉冲,该泵浦光的波长在2052 nm处,脉冲宽度16 ps、能量为260 mJ。采用两级前置放大器和增强放大器,最后通过压缩器,获得了脉冲能量为0.75 mJ、脉宽为188 fs的7 μm脉冲。

      图  13  (a) 7 μm OPCPA系统示意图。MIR种子是通过DFG从一个三色光纤前端通过两个宽带飞秒输出产生的。然后,在介质体中将MIR脉冲展宽,并在用啁啾反转级分离的前置放大器和增强放大器中连续放大。通过在前置放大器和增强放大器中调整种子到泵浦脉冲的持续时间来实现OPCPA的最大效率。利用BaF2介质体棒对宽带高能中红外脉冲进行了再压缩。(b)恢复的脉冲包络具有188 fs的半高宽持续时间,(c)测量(填充灰色)和恢复的光谱(红线)和相位(绿线)[22]

      Figure 13.  (a) Layout of the 7 μm OPCPA. The MIR seed is generated using the two broadband femtosecond outputs from a three-color fiber frontend via DFG. Afterward, the MIR pulses are stretched in a dielectric bulk and consecutively amplified in a pre-amplifier and a booster amplifier separated with a chirp inversion stage. Maximum efficiency of the OPCPA is achieved by tailoring the seed-to-pump pulse durations in the pre-amplifier and booster amplifier. The broadband high-energy mid-IR pulses are recompressed using a dielectric bulk rod of BaF2. (b) The retrieved pulse envelope with 188 fs FWHM duration, and (c) measured (filled gray) and retrieved spectrum (red line) and phase (green line)[22]

      最近,H.K.Liang的研究小组报道了一种基于LiGaS2晶体的9 μm、少周期MIR OPCPA系统,该系统是由1 μm Yb:YAG激光器以10 kHz的重复频率进行泵浦的[23]。这是第一个以1 μm波长泵浦的长波长MIR-OPCPA。如图14所示,将从Yb:YAG中分离出来的小部分泵浦注入YAG晶体中,产生中心波长为1.16 μm的白光连续谱。在两个放大级中连续放大被拉伸的信号脉冲。最后,在10 kHz重复频率下,获得了中心波长在9 μm处、脉冲能量为14 μJ、持续时间为142 fs (4.7个光周期)的长波长MIR闲频脉冲。9 μm脉冲通过KrS-5材料的进行非线性压缩,将脉冲脉冲进一步压缩到45 fs,对应于1.5个光学周期[24]

      图  14  (a) 9 μm OPCPA系统示意图. YAG,钇铝石榴石;ZnSe,硒化锌窗口;HR,高反射镜;TFP,薄膜偏振器;BS,分束器;LGS,LiGaS2晶体;Ge,锗窗口。对于TFP,S偏振的泵浦光的反射率和P偏振的信号光的透射率分别为>99%和91%。(b)SC产生后的信号脉冲光谱(蓝点)、预放大阶段(红色)和主放大阶段(黑色虚线);(c)输出闲频光的测量(黑色)和模拟(红色虚线)光谱[23]

      Figure 14.  (a) The schematic of the 9 μm OPCPA. YAG, Yttrium aluminum garnet; ZnSe, Zinc selenide window; HR, High reflective mirror; TFP, Thin film polarizer; BS, Beam splitter; LGS, LiGaS2 crystal; Ge, Germanium window. For TFP, the reflectance of the S-polarized pump and the transmittance of the P-polarized signal are measured as > 99% and 91% respectively. (b) The spectra of signal pulses after SC generation (blue dotted), the pre-amplification stage (red) and the main-amplification stage (black dashed); (c) The measured (black) and simulated (red dashed) spectra of the output idler pulse[23]

    • 近年来,中红外大能量、高功率、周期量级的激光系统激发了一系列的科学前沿探索。在强场物理方面,基于大能量周期量级OPCPA,激发了光子能量在100~1500 eV软X射线波段的高次谐波[24-26]。同时,基于高次谐波的产生,开启了阿秒脉冲的探索,将最短脉冲时间缩短到了40~50 as [27-29]。另外,利用大能量中红外OPCPA,在金属靶材中,激发了10~100 keV的硬X射线特征辐射峰,实现了具有飞秒脉冲时间长度的等离子体X射线源。

      中红外宽带激光在分子频谱探测方面也有重要应用。利用覆盖3~5 µm [30],4~12 µm [31] 的中红外双光频率梳,实现了对13C, 18O, 17O, 15N, 34S, 32S等同位素的十一分之几量级的灵敏探测。

      基于随着超快激光技术的发展,基于飞秒激光的微纳加工技术以其高附加值的优势在精密制造业中得到了广泛的应用。由于飞秒脉冲快速散热的特点,飞秒激光也被用于微创手术,如白内障摘除手术。然而,受可用飞秒激光波长的限制,其目前在生物医学微处理或手术中的应用仅限于白内障手术[32-33]和近视矫正手术[34-36]。波长为2~20 µm的MIR与分子强共振峰相吻合,导致了各种分子的强而尖锐的吸收峰。利用自由电子激光装置对水、蛋白质和脂质的强吸收共振进行了研究,提出了一种新的组织消融机制。结果表明,在选择6.2~6.7 µm波长的飞秒激光作用下,可显著提高切割效率,并将侧向损伤降至最低。随着高功率MIR飞秒激光器的出现和发展,我们展望了6~7 µm瓦量级MIR飞秒激光器在软组织微处理和微创外科的应用的发展前景。对于更长的波长,例如9~10 µm与羟基磷酸盐有很强的共振,而羟基磷酸盐是骨骼和牙齿等硬组织的主要组成部分。因此,利用OPA或OPCPA的长波MIR飞秒激光对硬组织进行微细加工具有重要的研究价值。

    • 文中对近年来MIR少周期脉冲的OPCPA系统的发展与医学上的应用进行了简单介绍。从输出脉冲的中心波长范围出发将OPCPA系统分为了两大类(2~4 μm和5~10 μm),这是由于OPCPA阶段采用的非线性晶体不同,在中心波长为2~4 μm MIR脉冲产生和放大中常用的非线性晶体主要有KTiOAsO4(KTA)、KTiOPO4(KTP)和LiNbO3(LNO),属于氧化物晶体。氧化物晶体的损伤阈值和机械硬度都很好,可以通过增加泵浦功率来提升输出功率,并且氧化物晶体的带隙比较宽,双光子吸收较少,因此可以使用具有更高光子能量的~1 μm脉冲进行泵浦。但其透明范围限制在5 μm以下,不利于长波长MIR脉冲的产生。而在5~10 μm的MIR脉冲的产生中,应用的晶体主要有ZnGeP2(ZGP)、CdSiP2(CSP)、AgGaS2(AGS)、AgGaS2(AGSe)、GaSe、BaGa4S7(BGS)、BaGa4Se7(BGSe)、LiGaS2(LGS)、LiGaSe2(LGSe),属于非氧化物晶体。一般来说,非氧化物晶体的有效非线性系数较高,透明范围可达10 μm以上,是产生长波红外脉冲的常用方法。但是大部分带隙比较窄(~2.4 eV)不能用1 μm的泵浦光,且损伤阈值小限制了输出功率。因此,产生长波中红外脉冲最经典的做法之一就是在利用氧化晶体将信号光放大,再选择合适的非氧化晶体通过DFG技术产生长波长中红外闲频光的输出,但是DFG阶段的转换效率限制了整体的转换效率。新型非氧化物锂基材料(如LGS)在中红外(6~16 µm)的宽光谱范围内透明,并表现出足够大的损伤阈值。结合高平均功率1 µm的泵浦激光技术,为扩展超短高功率激光脉冲的研究、开发和工业应用向长波中红外打开了大门[13]

参考文献 (36)

目录

    /

    返回文章
    返回